627 lines
18 KiB
C
627 lines
18 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
|
|
* Copyright 2017 Joyent, Inc.
|
|
*/
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/nvpair.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/systeminfo.h>
|
|
#include <sys/sunddi.h>
|
|
#include <sys/zfeature.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/kobj.h>
|
|
#include <sys/zone.h>
|
|
#endif
|
|
|
|
/*
|
|
* Pool configuration repository.
|
|
*
|
|
* Pool configuration is stored as a packed nvlist on the filesystem. By
|
|
* default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
|
|
* (when the ZFS module is loaded). Pools can also have the 'cachefile'
|
|
* property set that allows them to be stored in an alternate location until
|
|
* the control of external software.
|
|
*
|
|
* For each cache file, we have a single nvlist which holds all the
|
|
* configuration information. When the module loads, we read this information
|
|
* from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is
|
|
* maintained independently in spa.c. Whenever the namespace is modified, or
|
|
* the configuration of a pool is changed, we call spa_write_cachefile(), which
|
|
* walks through all the active pools and writes the configuration to disk.
|
|
*/
|
|
|
|
static uint64_t spa_config_generation = 1;
|
|
|
|
/*
|
|
* This can be overridden in userland to preserve an alternate namespace for
|
|
* userland pools when doing testing.
|
|
*/
|
|
char *spa_config_path = ZPOOL_CACHE;
|
|
int zfs_autoimport_disable = 1;
|
|
|
|
/*
|
|
* Called when the module is first loaded, this routine loads the configuration
|
|
* file into the SPA namespace. It does not actually open or load the pools; it
|
|
* only populates the namespace.
|
|
*/
|
|
void
|
|
spa_config_load(void)
|
|
{
|
|
void *buf = NULL;
|
|
nvlist_t *nvlist, *child;
|
|
nvpair_t *nvpair;
|
|
char *pathname;
|
|
struct _buf *file;
|
|
uint64_t fsize;
|
|
|
|
#ifdef _KERNEL
|
|
if (zfs_autoimport_disable)
|
|
return;
|
|
#endif
|
|
|
|
/*
|
|
* Open the configuration file.
|
|
*/
|
|
pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
(void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path);
|
|
|
|
file = kobj_open_file(pathname);
|
|
|
|
kmem_free(pathname, MAXPATHLEN);
|
|
|
|
if (file == (struct _buf *)-1)
|
|
return;
|
|
|
|
if (kobj_get_filesize(file, &fsize) != 0)
|
|
goto out;
|
|
|
|
buf = kmem_alloc(fsize, KM_SLEEP);
|
|
|
|
/*
|
|
* Read the nvlist from the file.
|
|
*/
|
|
if (kobj_read_file(file, buf, fsize, 0) < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Unpack the nvlist.
|
|
*/
|
|
if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Iterate over all elements in the nvlist, creating a new spa_t for
|
|
* each one with the specified configuration.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
nvpair = NULL;
|
|
while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
|
|
if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
|
|
continue;
|
|
|
|
child = fnvpair_value_nvlist(nvpair);
|
|
|
|
if (spa_lookup(nvpair_name(nvpair)) != NULL)
|
|
continue;
|
|
(void) spa_add(nvpair_name(nvpair), child, NULL);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
nvlist_free(nvlist);
|
|
|
|
out:
|
|
if (buf != NULL)
|
|
kmem_free(buf, fsize);
|
|
|
|
kobj_close_file(file);
|
|
}
|
|
|
|
static int
|
|
spa_config_remove(spa_config_dirent_t *dp)
|
|
{
|
|
#if defined(__linux__) && defined(_KERNEL)
|
|
int error, flags = FWRITE | FTRUNC;
|
|
uio_seg_t seg = UIO_SYSSPACE;
|
|
vnode_t *vp;
|
|
|
|
error = vn_open(dp->scd_path, seg, flags, 0644, &vp, 0, 0);
|
|
if (error == 0) {
|
|
(void) VOP_FSYNC(vp, FSYNC, kcred, NULL);
|
|
(void) VOP_CLOSE(vp, 0, 1, 0, kcred, NULL);
|
|
}
|
|
|
|
return (error);
|
|
#else
|
|
return (vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE));
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
|
|
{
|
|
size_t buflen;
|
|
char *buf;
|
|
vnode_t *vp;
|
|
int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
|
|
char *temp;
|
|
int err;
|
|
|
|
/*
|
|
* If the nvlist is empty (NULL), then remove the old cachefile.
|
|
*/
|
|
if (nvl == NULL) {
|
|
err = spa_config_remove(dp);
|
|
if (err == ENOENT)
|
|
err = 0;
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Pack the configuration into a buffer.
|
|
*/
|
|
buf = fnvlist_pack(nvl, &buflen);
|
|
temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
#if defined(__linux__) && defined(_KERNEL)
|
|
/*
|
|
* Write the configuration to disk. Due to the complexity involved
|
|
* in performing a rename and remove from within the kernel the file
|
|
* is instead truncated and overwritten in place. This way we always
|
|
* have a consistent view of the data or a zero length file.
|
|
*/
|
|
err = vn_open(dp->scd_path, UIO_SYSSPACE, oflags, 0644, &vp, 0, 0);
|
|
if (err == 0) {
|
|
err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0,
|
|
UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, NULL);
|
|
if (err == 0)
|
|
err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
|
|
|
|
(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
|
|
if (err)
|
|
(void) spa_config_remove(dp);
|
|
}
|
|
#else
|
|
/*
|
|
* Write the configuration to disk. We need to do the traditional
|
|
* 'write to temporary file, sync, move over original' to make sure we
|
|
* always have a consistent view of the data.
|
|
*/
|
|
(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
|
|
|
|
err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0);
|
|
if (err == 0) {
|
|
err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
|
|
0, RLIM64_INFINITY, kcred, NULL);
|
|
if (err == 0)
|
|
err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
|
|
if (err == 0)
|
|
err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
|
|
(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
|
|
}
|
|
|
|
(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
|
|
#endif
|
|
|
|
fnvlist_pack_free(buf, buflen);
|
|
kmem_free(temp, MAXPATHLEN);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Synchronize pool configuration to disk. This must be called with the
|
|
* namespace lock held. Synchronizing the pool cache is typically done after
|
|
* the configuration has been synced to the MOS. This exposes a window where
|
|
* the MOS config will have been updated but the cache file has not. If
|
|
* the system were to crash at that instant then the cached config may not
|
|
* contain the correct information to open the pool and an explicit import
|
|
* would be required.
|
|
*/
|
|
void
|
|
spa_write_cachefile(spa_t *target, boolean_t removing, boolean_t postsysevent)
|
|
{
|
|
spa_config_dirent_t *dp, *tdp;
|
|
nvlist_t *nvl;
|
|
char *pool_name;
|
|
boolean_t ccw_failure;
|
|
int error = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
if (rootdir == NULL || !(spa_mode_global & FWRITE))
|
|
return;
|
|
|
|
/*
|
|
* Iterate over all cachefiles for the pool, past or present. When the
|
|
* cachefile is changed, the new one is pushed onto this list, allowing
|
|
* us to update previous cachefiles that no longer contain this pool.
|
|
*/
|
|
ccw_failure = B_FALSE;
|
|
for (dp = list_head(&target->spa_config_list); dp != NULL;
|
|
dp = list_next(&target->spa_config_list, dp)) {
|
|
spa_t *spa = NULL;
|
|
if (dp->scd_path == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Iterate over all pools, adding any matching pools to 'nvl'.
|
|
*/
|
|
nvl = NULL;
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
/*
|
|
* Skip over our own pool if we're about to remove
|
|
* ourselves from the spa namespace or any pool that
|
|
* is readonly. Since we cannot guarantee that a
|
|
* readonly pool would successfully import upon reboot,
|
|
* we don't allow them to be written to the cache file.
|
|
*/
|
|
if ((spa == target && removing) ||
|
|
!spa_writeable(spa))
|
|
continue;
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
tdp = list_head(&spa->spa_config_list);
|
|
if (spa->spa_config == NULL ||
|
|
tdp == NULL ||
|
|
tdp->scd_path == NULL ||
|
|
strcmp(tdp->scd_path, dp->scd_path) != 0) {
|
|
mutex_exit(&spa->spa_props_lock);
|
|
continue;
|
|
}
|
|
|
|
if (nvl == NULL)
|
|
nvl = fnvlist_alloc();
|
|
|
|
if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME)
|
|
pool_name = fnvlist_lookup_string(
|
|
spa->spa_config, ZPOOL_CONFIG_POOL_NAME);
|
|
else
|
|
pool_name = spa_name(spa);
|
|
|
|
fnvlist_add_nvlist(nvl, pool_name, spa->spa_config);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
|
|
error = spa_config_write(dp, nvl);
|
|
if (error != 0)
|
|
ccw_failure = B_TRUE;
|
|
nvlist_free(nvl);
|
|
}
|
|
|
|
if (ccw_failure) {
|
|
/*
|
|
* Keep trying so that configuration data is
|
|
* written if/when any temporary filesystem
|
|
* resource issues are resolved.
|
|
*/
|
|
if (target->spa_ccw_fail_time == 0) {
|
|
zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE,
|
|
target, NULL, NULL, NULL, 0, 0);
|
|
}
|
|
target->spa_ccw_fail_time = gethrtime();
|
|
spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE);
|
|
} else {
|
|
/*
|
|
* Do not rate limit future attempts to update
|
|
* the config cache.
|
|
*/
|
|
target->spa_ccw_fail_time = 0;
|
|
}
|
|
|
|
/*
|
|
* Remove any config entries older than the current one.
|
|
*/
|
|
dp = list_head(&target->spa_config_list);
|
|
while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
|
|
list_remove(&target->spa_config_list, tdp);
|
|
if (tdp->scd_path != NULL)
|
|
spa_strfree(tdp->scd_path);
|
|
kmem_free(tdp, sizeof (spa_config_dirent_t));
|
|
}
|
|
|
|
spa_config_generation++;
|
|
|
|
if (postsysevent)
|
|
spa_event_notify(target, NULL, NULL, ESC_ZFS_CONFIG_SYNC);
|
|
}
|
|
|
|
/*
|
|
* Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
|
|
* and we don't want to allow the local zone to see all the pools anyway.
|
|
* So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
|
|
* information for all pool visible within the zone.
|
|
*/
|
|
nvlist_t *
|
|
spa_all_configs(uint64_t *generation)
|
|
{
|
|
nvlist_t *pools;
|
|
spa_t *spa = NULL;
|
|
|
|
if (*generation == spa_config_generation)
|
|
return (NULL);
|
|
|
|
pools = fnvlist_alloc();
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
if (INGLOBALZONE(curproc) ||
|
|
zone_dataset_visible(spa_name(spa), NULL)) {
|
|
mutex_enter(&spa->spa_props_lock);
|
|
fnvlist_add_nvlist(pools, spa_name(spa),
|
|
spa->spa_config);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
}
|
|
*generation = spa_config_generation;
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (pools);
|
|
}
|
|
|
|
void
|
|
spa_config_set(spa_t *spa, nvlist_t *config)
|
|
{
|
|
mutex_enter(&spa->spa_props_lock);
|
|
if (spa->spa_config != NULL && spa->spa_config != config)
|
|
nvlist_free(spa->spa_config);
|
|
spa->spa_config = config;
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
|
|
/*
|
|
* Generate the pool's configuration based on the current in-core state.
|
|
*
|
|
* We infer whether to generate a complete config or just one top-level config
|
|
* based on whether vd is the root vdev.
|
|
*/
|
|
nvlist_t *
|
|
spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
|
|
{
|
|
nvlist_t *config, *nvroot;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
unsigned long hostid = 0;
|
|
boolean_t locked = B_FALSE;
|
|
uint64_t split_guid;
|
|
char *pool_name;
|
|
|
|
if (vd == NULL) {
|
|
vd = rvd;
|
|
locked = B_TRUE;
|
|
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
|
|
}
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
|
|
(SCL_CONFIG | SCL_STATE));
|
|
|
|
/*
|
|
* If txg is -1, report the current value of spa->spa_config_txg.
|
|
*/
|
|
if (txg == -1ULL)
|
|
txg = spa->spa_config_txg;
|
|
|
|
/*
|
|
* Originally, users had to handle spa namespace collisions by either
|
|
* exporting the already imported pool or by specifying a new name for
|
|
* the pool with a conflicting name. In the case of root pools from
|
|
* virtual guests, neither approach to collision resolution is
|
|
* reasonable. This is addressed by extending the new name syntax with
|
|
* an option to specify that the new name is temporary. When specified,
|
|
* ZFS_IMPORT_TEMP_NAME will be set in spa->spa_import_flags to tell us
|
|
* to use the previous name, which we do below.
|
|
*/
|
|
if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME) {
|
|
VERIFY0(nvlist_lookup_string(spa->spa_config,
|
|
ZPOOL_CONFIG_POOL_NAME, &pool_name));
|
|
} else
|
|
pool_name = spa_name(spa);
|
|
|
|
config = fnvlist_alloc();
|
|
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
|
|
fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, pool_name);
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa));
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg);
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, spa->spa_errata);
|
|
if (spa->spa_comment != NULL)
|
|
fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT,
|
|
spa->spa_comment);
|
|
|
|
hostid = spa_get_hostid(spa);
|
|
if (hostid != 0)
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid);
|
|
fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname()->nodename);
|
|
|
|
int config_gen_flags = 0;
|
|
if (vd != rvd) {
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
|
|
vd->vdev_top->vdev_guid);
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid);
|
|
if (vd->vdev_isspare)
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_IS_SPARE, 1ULL);
|
|
if (vd->vdev_islog)
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_IS_LOG, 1ULL);
|
|
vd = vd->vdev_top; /* label contains top config */
|
|
} else {
|
|
/*
|
|
* Only add the (potentially large) split information
|
|
* in the mos config, and not in the vdev labels
|
|
*/
|
|
if (spa->spa_config_splitting != NULL)
|
|
fnvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
|
|
spa->spa_config_splitting);
|
|
|
|
fnvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS);
|
|
|
|
config_gen_flags |= VDEV_CONFIG_MOS;
|
|
}
|
|
|
|
/*
|
|
* Add the top-level config. We even add this on pools which
|
|
* don't support holes in the namespace.
|
|
*/
|
|
vdev_top_config_generate(spa, config);
|
|
|
|
/*
|
|
* If we're splitting, record the original pool's guid.
|
|
*/
|
|
if (spa->spa_config_splitting != NULL &&
|
|
nvlist_lookup_uint64(spa->spa_config_splitting,
|
|
ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, split_guid);
|
|
}
|
|
|
|
nvroot = vdev_config_generate(spa, vd, getstats, config_gen_flags);
|
|
fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot);
|
|
nvlist_free(nvroot);
|
|
|
|
/*
|
|
* Store what's necessary for reading the MOS in the label.
|
|
*/
|
|
fnvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
|
|
spa->spa_label_features);
|
|
|
|
if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
|
|
ddt_histogram_t *ddh;
|
|
ddt_stat_t *dds;
|
|
ddt_object_t *ddo;
|
|
|
|
ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
|
|
ddt_get_dedup_histogram(spa, ddh);
|
|
fnvlist_add_uint64_array(config,
|
|
ZPOOL_CONFIG_DDT_HISTOGRAM,
|
|
(uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t));
|
|
kmem_free(ddh, sizeof (ddt_histogram_t));
|
|
|
|
ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
|
|
ddt_get_dedup_object_stats(spa, ddo);
|
|
fnvlist_add_uint64_array(config,
|
|
ZPOOL_CONFIG_DDT_OBJ_STATS,
|
|
(uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t));
|
|
kmem_free(ddo, sizeof (ddt_object_t));
|
|
|
|
dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
|
|
ddt_get_dedup_stats(spa, dds);
|
|
fnvlist_add_uint64_array(config,
|
|
ZPOOL_CONFIG_DDT_STATS,
|
|
(uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t));
|
|
kmem_free(dds, sizeof (ddt_stat_t));
|
|
}
|
|
|
|
if (locked)
|
|
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
|
|
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Update all disk labels, generate a fresh config based on the current
|
|
* in-core state, and sync the global config cache (do not sync the config
|
|
* cache if this is a booting rootpool).
|
|
*/
|
|
void
|
|
spa_config_update(spa_t *spa, int what)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t txg;
|
|
int c;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
txg = spa_last_synced_txg(spa) + 1;
|
|
if (what == SPA_CONFIG_UPDATE_POOL) {
|
|
vdev_config_dirty(rvd);
|
|
} else {
|
|
/*
|
|
* If we have top-level vdevs that were added but have
|
|
* not yet been prepared for allocation, do that now.
|
|
* (It's safe now because the config cache is up to date,
|
|
* so it will be able to translate the new DVAs.)
|
|
* See comments in spa_vdev_add() for full details.
|
|
*/
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
|
|
/*
|
|
* Explicitly skip vdevs that are indirect or
|
|
* log vdevs that are being removed. The reason
|
|
* is that both of those can have vdev_ms_array
|
|
* set to 0 and we wouldn't want to change their
|
|
* metaslab size nor call vdev_expand() on them.
|
|
*/
|
|
if (!vdev_is_concrete(tvd) ||
|
|
(tvd->vdev_islog && tvd->vdev_removing))
|
|
continue;
|
|
|
|
if (tvd->vdev_ms_array == 0)
|
|
vdev_metaslab_set_size(tvd);
|
|
vdev_expand(tvd, txg);
|
|
}
|
|
}
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
/*
|
|
* Wait for the mosconfig to be regenerated and synced.
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, txg);
|
|
|
|
/*
|
|
* Update the global config cache to reflect the new mosconfig.
|
|
*/
|
|
if (!spa->spa_is_root) {
|
|
spa_write_cachefile(spa, B_FALSE,
|
|
what != SPA_CONFIG_UPDATE_POOL);
|
|
}
|
|
|
|
if (what == SPA_CONFIG_UPDATE_POOL)
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(spa_config_load);
|
|
EXPORT_SYMBOL(spa_all_configs);
|
|
EXPORT_SYMBOL(spa_config_set);
|
|
EXPORT_SYMBOL(spa_config_generate);
|
|
EXPORT_SYMBOL(spa_config_update);
|
|
|
|
module_param(spa_config_path, charp, 0444);
|
|
MODULE_PARM_DESC(spa_config_path, "SPA config file (/etc/zfs/zpool.cache)");
|
|
|
|
module_param(zfs_autoimport_disable, int, 0644);
|
|
MODULE_PARM_DESC(zfs_autoimport_disable, "Disable pool import at module load");
|
|
|
|
#endif
|