zfs-builds-mm/zfs-2.0.0-rc4/cmd/ztest/ztest.c
2020-10-22 14:20:35 +02:00

7818 lines
199 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2017 Joyent, Inc.
* Copyright (c) 2017, Intel Corporation.
*/
/*
* The objective of this program is to provide a DMU/ZAP/SPA stress test
* that runs entirely in userland, is easy to use, and easy to extend.
*
* The overall design of the ztest program is as follows:
*
* (1) For each major functional area (e.g. adding vdevs to a pool,
* creating and destroying datasets, reading and writing objects, etc)
* we have a simple routine to test that functionality. These
* individual routines do not have to do anything "stressful".
*
* (2) We turn these simple functionality tests into a stress test by
* running them all in parallel, with as many threads as desired,
* and spread across as many datasets, objects, and vdevs as desired.
*
* (3) While all this is happening, we inject faults into the pool to
* verify that self-healing data really works.
*
* (4) Every time we open a dataset, we change its checksum and compression
* functions. Thus even individual objects vary from block to block
* in which checksum they use and whether they're compressed.
*
* (5) To verify that we never lose on-disk consistency after a crash,
* we run the entire test in a child of the main process.
* At random times, the child self-immolates with a SIGKILL.
* This is the software equivalent of pulling the power cord.
* The parent then runs the test again, using the existing
* storage pool, as many times as desired. If backwards compatibility
* testing is enabled ztest will sometimes run the "older" version
* of ztest after a SIGKILL.
*
* (6) To verify that we don't have future leaks or temporal incursions,
* many of the functional tests record the transaction group number
* as part of their data. When reading old data, they verify that
* the transaction group number is less than the current, open txg.
* If you add a new test, please do this if applicable.
*
* (7) Threads are created with a reduced stack size, for sanity checking.
* Therefore, it's important not to allocate huge buffers on the stack.
*
* When run with no arguments, ztest runs for about five minutes and
* produces no output if successful. To get a little bit of information,
* specify -V. To get more information, specify -VV, and so on.
*
* To turn this into an overnight stress test, use -T to specify run time.
*
* You can ask more vdevs [-v], datasets [-d], or threads [-t]
* to increase the pool capacity, fanout, and overall stress level.
*
* Use the -k option to set the desired frequency of kills.
*
* When ztest invokes itself it passes all relevant information through a
* temporary file which is mmap-ed in the child process. This allows shared
* memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
* stored at offset 0 of this file and contains information on the size and
* number of shared structures in the file. The information stored in this file
* must remain backwards compatible with older versions of ztest so that
* ztest can invoke them during backwards compatibility testing (-B).
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/dmu_objset.h>
#include <sys/poll.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/zio.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_file.h>
#include <sys/vdev_initialize.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_trim.h>
#include <sys/spa_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_destroy.h>
#include <sys/dsl_scan.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_refcount.h>
#include <sys/zfeature.h>
#include <sys/dsl_userhold.h>
#include <sys/abd.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <umem.h>
#include <ctype.h>
#include <math.h>
#include <sys/fs/zfs.h>
#include <zfs_fletcher.h>
#include <libnvpair.h>
#include <libzutil.h>
#include <sys/crypto/icp.h>
#ifdef __GLIBC__
#include <execinfo.h> /* for backtrace() */
#endif
static int ztest_fd_data = -1;
static int ztest_fd_rand = -1;
typedef struct ztest_shared_hdr {
uint64_t zh_hdr_size;
uint64_t zh_opts_size;
uint64_t zh_size;
uint64_t zh_stats_size;
uint64_t zh_stats_count;
uint64_t zh_ds_size;
uint64_t zh_ds_count;
} ztest_shared_hdr_t;
static ztest_shared_hdr_t *ztest_shared_hdr;
enum ztest_class_state {
ZTEST_VDEV_CLASS_OFF,
ZTEST_VDEV_CLASS_ON,
ZTEST_VDEV_CLASS_RND
};
typedef struct ztest_shared_opts {
char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
char zo_alt_ztest[MAXNAMELEN];
char zo_alt_libpath[MAXNAMELEN];
uint64_t zo_vdevs;
uint64_t zo_vdevtime;
size_t zo_vdev_size;
int zo_ashift;
int zo_mirrors;
int zo_raidz;
int zo_raidz_parity;
int zo_datasets;
int zo_threads;
uint64_t zo_passtime;
uint64_t zo_killrate;
int zo_verbose;
int zo_init;
uint64_t zo_time;
uint64_t zo_maxloops;
uint64_t zo_metaslab_force_ganging;
int zo_mmp_test;
int zo_special_vdevs;
int zo_dump_dbgmsg;
} ztest_shared_opts_t;
static const ztest_shared_opts_t ztest_opts_defaults = {
.zo_pool = "ztest",
.zo_dir = "/tmp",
.zo_alt_ztest = { '\0' },
.zo_alt_libpath = { '\0' },
.zo_vdevs = 5,
.zo_ashift = SPA_MINBLOCKSHIFT,
.zo_mirrors = 2,
.zo_raidz = 4,
.zo_raidz_parity = 1,
.zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
.zo_datasets = 7,
.zo_threads = 23,
.zo_passtime = 60, /* 60 seconds */
.zo_killrate = 70, /* 70% kill rate */
.zo_verbose = 0,
.zo_mmp_test = 0,
.zo_init = 1,
.zo_time = 300, /* 5 minutes */
.zo_maxloops = 50, /* max loops during spa_freeze() */
.zo_metaslab_force_ganging = 64 << 10,
.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
};
extern uint64_t metaslab_force_ganging;
extern uint64_t metaslab_df_alloc_threshold;
extern unsigned long zfs_deadman_synctime_ms;
extern int metaslab_preload_limit;
extern boolean_t zfs_compressed_arc_enabled;
extern int zfs_abd_scatter_enabled;
extern int dmu_object_alloc_chunk_shift;
extern boolean_t zfs_force_some_double_word_sm_entries;
extern unsigned long zio_decompress_fail_fraction;
extern unsigned long zfs_reconstruct_indirect_damage_fraction;
static ztest_shared_opts_t *ztest_shared_opts;
static ztest_shared_opts_t ztest_opts;
static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
typedef struct ztest_shared_ds {
uint64_t zd_seq;
} ztest_shared_ds_t;
static ztest_shared_ds_t *ztest_shared_ds;
#define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
#define BT_MAGIC 0x123456789abcdefULL
#define MAXFAULTS(zs) \
(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
enum ztest_io_type {
ZTEST_IO_WRITE_TAG,
ZTEST_IO_WRITE_PATTERN,
ZTEST_IO_WRITE_ZEROES,
ZTEST_IO_TRUNCATE,
ZTEST_IO_SETATTR,
ZTEST_IO_REWRITE,
ZTEST_IO_TYPES
};
typedef struct ztest_block_tag {
uint64_t bt_magic;
uint64_t bt_objset;
uint64_t bt_object;
uint64_t bt_dnodesize;
uint64_t bt_offset;
uint64_t bt_gen;
uint64_t bt_txg;
uint64_t bt_crtxg;
} ztest_block_tag_t;
typedef struct bufwad {
uint64_t bw_index;
uint64_t bw_txg;
uint64_t bw_data;
} bufwad_t;
/*
* It would be better to use a rangelock_t per object. Unfortunately
* the rangelock_t is not a drop-in replacement for rl_t, because we
* still need to map from object ID to rangelock_t.
*/
typedef enum {
RL_READER,
RL_WRITER,
RL_APPEND
} rl_type_t;
typedef struct rll {
void *rll_writer;
int rll_readers;
kmutex_t rll_lock;
kcondvar_t rll_cv;
} rll_t;
typedef struct rl {
uint64_t rl_object;
uint64_t rl_offset;
uint64_t rl_size;
rll_t *rl_lock;
} rl_t;
#define ZTEST_RANGE_LOCKS 64
#define ZTEST_OBJECT_LOCKS 64
/*
* Object descriptor. Used as a template for object lookup/create/remove.
*/
typedef struct ztest_od {
uint64_t od_dir;
uint64_t od_object;
dmu_object_type_t od_type;
dmu_object_type_t od_crtype;
uint64_t od_blocksize;
uint64_t od_crblocksize;
uint64_t od_crdnodesize;
uint64_t od_gen;
uint64_t od_crgen;
char od_name[ZFS_MAX_DATASET_NAME_LEN];
} ztest_od_t;
/*
* Per-dataset state.
*/
typedef struct ztest_ds {
ztest_shared_ds_t *zd_shared;
objset_t *zd_os;
pthread_rwlock_t zd_zilog_lock;
zilog_t *zd_zilog;
ztest_od_t *zd_od; /* debugging aid */
char zd_name[ZFS_MAX_DATASET_NAME_LEN];
kmutex_t zd_dirobj_lock;
rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
} ztest_ds_t;
/*
* Per-iteration state.
*/
typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
typedef struct ztest_info {
ztest_func_t *zi_func; /* test function */
uint64_t zi_iters; /* iterations per execution */
uint64_t *zi_interval; /* execute every <interval> seconds */
const char *zi_funcname; /* name of test function */
} ztest_info_t;
typedef struct ztest_shared_callstate {
uint64_t zc_count; /* per-pass count */
uint64_t zc_time; /* per-pass time */
uint64_t zc_next; /* next time to call this function */
} ztest_shared_callstate_t;
static ztest_shared_callstate_t *ztest_shared_callstate;
#define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
ztest_func_t ztest_dmu_read_write;
ztest_func_t ztest_dmu_write_parallel;
ztest_func_t ztest_dmu_object_alloc_free;
ztest_func_t ztest_dmu_object_next_chunk;
ztest_func_t ztest_dmu_commit_callbacks;
ztest_func_t ztest_zap;
ztest_func_t ztest_zap_parallel;
ztest_func_t ztest_zil_commit;
ztest_func_t ztest_zil_remount;
ztest_func_t ztest_dmu_read_write_zcopy;
ztest_func_t ztest_dmu_objset_create_destroy;
ztest_func_t ztest_dmu_prealloc;
ztest_func_t ztest_fzap;
ztest_func_t ztest_dmu_snapshot_create_destroy;
ztest_func_t ztest_dsl_prop_get_set;
ztest_func_t ztest_spa_prop_get_set;
ztest_func_t ztest_spa_create_destroy;
ztest_func_t ztest_fault_inject;
ztest_func_t ztest_dmu_snapshot_hold;
ztest_func_t ztest_mmp_enable_disable;
ztest_func_t ztest_scrub;
ztest_func_t ztest_dsl_dataset_promote_busy;
ztest_func_t ztest_vdev_attach_detach;
ztest_func_t ztest_vdev_LUN_growth;
ztest_func_t ztest_vdev_add_remove;
ztest_func_t ztest_vdev_class_add;
ztest_func_t ztest_vdev_aux_add_remove;
ztest_func_t ztest_split_pool;
ztest_func_t ztest_reguid;
ztest_func_t ztest_spa_upgrade;
ztest_func_t ztest_device_removal;
ztest_func_t ztest_spa_checkpoint_create_discard;
ztest_func_t ztest_initialize;
ztest_func_t ztest_trim;
ztest_func_t ztest_fletcher;
ztest_func_t ztest_fletcher_incr;
ztest_func_t ztest_verify_dnode_bt;
uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
#define ZTI_INIT(func, iters, interval) \
{ .zi_func = (func), \
.zi_iters = (iters), \
.zi_interval = (interval), \
.zi_funcname = # func }
ztest_info_t ztest_info[] = {
ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
ZTI_INIT(ztest_zap, 30, &zopt_always),
ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
ZTI_INIT(ztest_split_pool, 1, &zopt_always),
ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
#if 0
ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
#endif
ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
};
#define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
/*
* The following struct is used to hold a list of uncalled commit callbacks.
* The callbacks are ordered by txg number.
*/
typedef struct ztest_cb_list {
kmutex_t zcl_callbacks_lock;
list_t zcl_callbacks;
} ztest_cb_list_t;
/*
* Stuff we need to share writably between parent and child.
*/
typedef struct ztest_shared {
boolean_t zs_do_init;
hrtime_t zs_proc_start;
hrtime_t zs_proc_stop;
hrtime_t zs_thread_start;
hrtime_t zs_thread_stop;
hrtime_t zs_thread_kill;
uint64_t zs_enospc_count;
uint64_t zs_vdev_next_leaf;
uint64_t zs_vdev_aux;
uint64_t zs_alloc;
uint64_t zs_space;
uint64_t zs_splits;
uint64_t zs_mirrors;
uint64_t zs_metaslab_sz;
uint64_t zs_metaslab_df_alloc_threshold;
uint64_t zs_guid;
} ztest_shared_t;
#define ID_PARALLEL -1ULL
static char ztest_dev_template[] = "%s/%s.%llua";
static char ztest_aux_template[] = "%s/%s.%s.%llu";
ztest_shared_t *ztest_shared;
static spa_t *ztest_spa = NULL;
static ztest_ds_t *ztest_ds;
static kmutex_t ztest_vdev_lock;
static boolean_t ztest_device_removal_active = B_FALSE;
static boolean_t ztest_pool_scrubbed = B_FALSE;
static kmutex_t ztest_checkpoint_lock;
/*
* The ztest_name_lock protects the pool and dataset namespace used by
* the individual tests. To modify the namespace, consumers must grab
* this lock as writer. Grabbing the lock as reader will ensure that the
* namespace does not change while the lock is held.
*/
static pthread_rwlock_t ztest_name_lock;
static boolean_t ztest_dump_core = B_TRUE;
static boolean_t ztest_exiting;
/* Global commit callback list */
static ztest_cb_list_t zcl;
/* Commit cb delay */
static uint64_t zc_min_txg_delay = UINT64_MAX;
static int zc_cb_counter = 0;
/*
* Minimum number of commit callbacks that need to be registered for us to check
* whether the minimum txg delay is acceptable.
*/
#define ZTEST_COMMIT_CB_MIN_REG 100
/*
* If a number of txgs equal to this threshold have been created after a commit
* callback has been registered but not called, then we assume there is an
* implementation bug.
*/
#define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
enum ztest_object {
ZTEST_META_DNODE = 0,
ZTEST_DIROBJ,
ZTEST_OBJECTS
};
static void usage(boolean_t) __NORETURN;
static int ztest_scrub_impl(spa_t *spa);
/*
* These libumem hooks provide a reasonable set of defaults for the allocator's
* debugging facilities.
*/
const char *
_umem_debug_init(void)
{
return ("default,verbose"); /* $UMEM_DEBUG setting */
}
const char *
_umem_logging_init(void)
{
return ("fail,contents"); /* $UMEM_LOGGING setting */
}
static void
dump_debug_buffer(void)
{
ssize_t ret __attribute__((unused));
if (!ztest_opts.zo_dump_dbgmsg)
return;
/*
* We use write() instead of printf() so that this function
* is safe to call from a signal handler.
*/
ret = write(STDOUT_FILENO, "\n", 1);
zfs_dbgmsg_print("ztest");
}
#define BACKTRACE_SZ 100
static void sig_handler(int signo)
{
struct sigaction action;
#ifdef __GLIBC__ /* backtrace() is a GNU extension */
int nptrs;
void *buffer[BACKTRACE_SZ];
nptrs = backtrace(buffer, BACKTRACE_SZ);
backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
#endif
dump_debug_buffer();
/*
* Restore default action and re-raise signal so SIGSEGV and
* SIGABRT can trigger a core dump.
*/
action.sa_handler = SIG_DFL;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
(void) sigaction(signo, &action, NULL);
raise(signo);
}
#define FATAL_MSG_SZ 1024
char *fatal_msg;
static void
fatal(int do_perror, char *message, ...)
{
va_list args;
int save_errno = errno;
char *buf;
(void) fflush(stdout);
buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
va_start(args, message);
(void) sprintf(buf, "ztest: ");
/* LINTED */
(void) vsprintf(buf + strlen(buf), message, args);
va_end(args);
if (do_perror) {
(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
": %s", strerror(save_errno));
}
(void) fprintf(stderr, "%s\n", buf);
fatal_msg = buf; /* to ease debugging */
if (ztest_dump_core)
abort();
else
dump_debug_buffer();
exit(3);
}
static int
str2shift(const char *buf)
{
const char *ends = "BKMGTPEZ";
int i;
if (buf[0] == '\0')
return (0);
for (i = 0; i < strlen(ends); i++) {
if (toupper(buf[0]) == ends[i])
break;
}
if (i == strlen(ends)) {
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
buf);
usage(B_FALSE);
}
if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
return (10*i);
}
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
usage(B_FALSE);
/* NOTREACHED */
}
static uint64_t
nicenumtoull(const char *buf)
{
char *end;
uint64_t val;
val = strtoull(buf, &end, 0);
if (end == buf) {
(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
usage(B_FALSE);
} else if (end[0] == '.') {
double fval = strtod(buf, &end);
fval *= pow(2, str2shift(end));
/*
* UINT64_MAX is not exactly representable as a double.
* The closest representation is UINT64_MAX + 1, so we
* use a >= comparison instead of > for the bounds check.
*/
if (fval >= (double)UINT64_MAX) {
(void) fprintf(stderr, "ztest: value too large: %s\n",
buf);
usage(B_FALSE);
}
val = (uint64_t)fval;
} else {
int shift = str2shift(end);
if (shift >= 64 || (val << shift) >> shift != val) {
(void) fprintf(stderr, "ztest: value too large: %s\n",
buf);
usage(B_FALSE);
}
val <<= shift;
}
return (val);
}
static void
usage(boolean_t requested)
{
const ztest_shared_opts_t *zo = &ztest_opts_defaults;
char nice_vdev_size[NN_NUMBUF_SZ];
char nice_force_ganging[NN_NUMBUF_SZ];
FILE *fp = requested ? stdout : stderr;
nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
sizeof (nice_force_ganging));
(void) fprintf(fp, "Usage: %s\n"
"\t[-v vdevs (default: %llu)]\n"
"\t[-s size_of_each_vdev (default: %s)]\n"
"\t[-a alignment_shift (default: %d)] use 0 for random\n"
"\t[-m mirror_copies (default: %d)]\n"
"\t[-r raidz_disks (default: %d)]\n"
"\t[-R raidz_parity (default: %d)]\n"
"\t[-d datasets (default: %d)]\n"
"\t[-t threads (default: %d)]\n"
"\t[-g gang_block_threshold (default: %s)]\n"
"\t[-i init_count (default: %d)] initialize pool i times\n"
"\t[-k kill_percentage (default: %llu%%)]\n"
"\t[-p pool_name (default: %s)]\n"
"\t[-f dir (default: %s)] file directory for vdev files\n"
"\t[-M] Multi-host simulate pool imported on remote host\n"
"\t[-V] verbose (use multiple times for ever more blather)\n"
"\t[-E] use existing pool instead of creating new one\n"
"\t[-T time (default: %llu sec)] total run time\n"
"\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
"\t[-P passtime (default: %llu sec)] time per pass\n"
"\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
"\t[-C vdev class state (default: random)] special=on|off|random\n"
"\t[-o variable=value] ... set global variable to an unsigned\n"
"\t 32-bit integer value\n"
"\t[-G dump zfs_dbgmsg buffer before exiting due to an error\n"
"\t[-h] (print help)\n"
"",
zo->zo_pool,
(u_longlong_t)zo->zo_vdevs, /* -v */
nice_vdev_size, /* -s */
zo->zo_ashift, /* -a */
zo->zo_mirrors, /* -m */
zo->zo_raidz, /* -r */
zo->zo_raidz_parity, /* -R */
zo->zo_datasets, /* -d */
zo->zo_threads, /* -t */
nice_force_ganging, /* -g */
zo->zo_init, /* -i */
(u_longlong_t)zo->zo_killrate, /* -k */
zo->zo_pool, /* -p */
zo->zo_dir, /* -f */
(u_longlong_t)zo->zo_time, /* -T */
(u_longlong_t)zo->zo_maxloops, /* -F */
(u_longlong_t)zo->zo_passtime);
exit(requested ? 0 : 1);
}
static void
ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
{
char name[32];
char *value;
int state = ZTEST_VDEV_CLASS_RND;
(void) strlcpy(name, input, sizeof (name));
value = strchr(name, '=');
if (value == NULL) {
(void) fprintf(stderr, "missing value in property=value "
"'-C' argument (%s)\n", input);
usage(B_FALSE);
}
*(value) = '\0';
value++;
if (strcmp(value, "on") == 0) {
state = ZTEST_VDEV_CLASS_ON;
} else if (strcmp(value, "off") == 0) {
state = ZTEST_VDEV_CLASS_OFF;
} else if (strcmp(value, "random") == 0) {
state = ZTEST_VDEV_CLASS_RND;
} else {
(void) fprintf(stderr, "invalid property value '%s'\n", value);
usage(B_FALSE);
}
if (strcmp(name, "special") == 0) {
zo->zo_special_vdevs = state;
} else {
(void) fprintf(stderr, "invalid property name '%s'\n", name);
usage(B_FALSE);
}
if (zo->zo_verbose >= 3)
(void) printf("%s vdev state is '%s'\n", name, value);
}
static void
process_options(int argc, char **argv)
{
char *path;
ztest_shared_opts_t *zo = &ztest_opts;
int opt;
uint64_t value;
char altdir[MAXNAMELEN] = { 0 };
bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
while ((opt = getopt(argc, argv,
"v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
value = 0;
switch (opt) {
case 'v':
case 's':
case 'a':
case 'm':
case 'r':
case 'R':
case 'd':
case 't':
case 'g':
case 'i':
case 'k':
case 'T':
case 'P':
case 'F':
value = nicenumtoull(optarg);
}
switch (opt) {
case 'v':
zo->zo_vdevs = value;
break;
case 's':
zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
break;
case 'a':
zo->zo_ashift = value;
break;
case 'm':
zo->zo_mirrors = value;
break;
case 'r':
zo->zo_raidz = MAX(1, value);
break;
case 'R':
zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
break;
case 'd':
zo->zo_datasets = MAX(1, value);
break;
case 't':
zo->zo_threads = MAX(1, value);
break;
case 'g':
zo->zo_metaslab_force_ganging =
MAX(SPA_MINBLOCKSIZE << 1, value);
break;
case 'i':
zo->zo_init = value;
break;
case 'k':
zo->zo_killrate = value;
break;
case 'p':
(void) strlcpy(zo->zo_pool, optarg,
sizeof (zo->zo_pool));
break;
case 'f':
path = realpath(optarg, NULL);
if (path == NULL) {
(void) fprintf(stderr, "error: %s: %s\n",
optarg, strerror(errno));
usage(B_FALSE);
} else {
(void) strlcpy(zo->zo_dir, path,
sizeof (zo->zo_dir));
free(path);
}
break;
case 'M':
zo->zo_mmp_test = 1;
break;
case 'V':
zo->zo_verbose++;
break;
case 'E':
zo->zo_init = 0;
break;
case 'T':
zo->zo_time = value;
break;
case 'P':
zo->zo_passtime = MAX(1, value);
break;
case 'F':
zo->zo_maxloops = MAX(1, value);
break;
case 'B':
(void) strlcpy(altdir, optarg, sizeof (altdir));
break;
case 'C':
ztest_parse_name_value(optarg, zo);
break;
case 'o':
if (set_global_var(optarg) != 0)
usage(B_FALSE);
break;
case 'G':
zo->zo_dump_dbgmsg = 1;
break;
case 'h':
usage(B_TRUE);
break;
case '?':
default:
usage(B_FALSE);
break;
}
}
zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
zo->zo_vdevtime =
(zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
UINT64_MAX >> 2);
if (strlen(altdir) > 0) {
char *cmd;
char *realaltdir;
char *bin;
char *ztest;
char *isa;
int isalen;
cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
VERIFY(NULL != realpath(getexecname(), cmd));
if (0 != access(altdir, F_OK)) {
ztest_dump_core = B_FALSE;
fatal(B_TRUE, "invalid alternate ztest path: %s",
altdir);
}
VERIFY(NULL != realpath(altdir, realaltdir));
/*
* 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
* We want to extract <isa> to determine if we should use
* 32 or 64 bit binaries.
*/
bin = strstr(cmd, "/usr/bin/");
ztest = strstr(bin, "/ztest");
isa = bin + 9;
isalen = ztest - isa;
(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
"%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
"%s/usr/lib/%.*s", realaltdir, isalen, isa);
if (0 != access(zo->zo_alt_ztest, X_OK)) {
ztest_dump_core = B_FALSE;
fatal(B_TRUE, "invalid alternate ztest: %s",
zo->zo_alt_ztest);
} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
ztest_dump_core = B_FALSE;
fatal(B_TRUE, "invalid alternate lib directory %s",
zo->zo_alt_libpath);
}
umem_free(cmd, MAXPATHLEN);
umem_free(realaltdir, MAXPATHLEN);
}
}
static void
ztest_kill(ztest_shared_t *zs)
{
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
/*
* Before we kill off ztest, make sure that the config is updated.
* See comment above spa_write_cachefile().
*/
mutex_enter(&spa_namespace_lock);
spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
mutex_exit(&spa_namespace_lock);
(void) kill(getpid(), SIGKILL);
}
static uint64_t
ztest_random(uint64_t range)
{
uint64_t r;
ASSERT3S(ztest_fd_rand, >=, 0);
if (range == 0)
return (0);
if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
fatal(1, "short read from /dev/urandom");
return (r % range);
}
/* ARGSUSED */
static void
ztest_record_enospc(const char *s)
{
ztest_shared->zs_enospc_count++;
}
static uint64_t
ztest_get_ashift(void)
{
if (ztest_opts.zo_ashift == 0)
return (SPA_MINBLOCKSHIFT + ztest_random(5));
return (ztest_opts.zo_ashift);
}
static nvlist_t *
make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
{
char *pathbuf;
uint64_t vdev;
nvlist_t *file;
pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
if (ashift == 0)
ashift = ztest_get_ashift();
if (path == NULL) {
path = pathbuf;
if (aux != NULL) {
vdev = ztest_shared->zs_vdev_aux;
(void) snprintf(path, MAXPATHLEN,
ztest_aux_template, ztest_opts.zo_dir,
pool == NULL ? ztest_opts.zo_pool : pool,
aux, vdev);
} else {
vdev = ztest_shared->zs_vdev_next_leaf++;
(void) snprintf(path, MAXPATHLEN,
ztest_dev_template, ztest_opts.zo_dir,
pool == NULL ? ztest_opts.zo_pool : pool, vdev);
}
}
if (size != 0) {
int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
if (fd == -1)
fatal(1, "can't open %s", path);
if (ftruncate(fd, size) != 0)
fatal(1, "can't ftruncate %s", path);
(void) close(fd);
}
VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
umem_free(pathbuf, MAXPATHLEN);
return (file);
}
static nvlist_t *
make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
uint64_t ashift, int r)
{
nvlist_t *raidz, **child;
int c;
if (r < 2)
return (make_vdev_file(path, aux, pool, size, ashift));
child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
for (c = 0; c < r; c++)
child[c] = make_vdev_file(path, aux, pool, size, ashift);
VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_RAIDZ) == 0);
VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
ztest_opts.zo_raidz_parity) == 0);
VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
child, r) == 0);
for (c = 0; c < r; c++)
nvlist_free(child[c]);
umem_free(child, r * sizeof (nvlist_t *));
return (raidz);
}
static nvlist_t *
make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
uint64_t ashift, int r, int m)
{
nvlist_t *mirror, **child;
int c;
if (m < 1)
return (make_vdev_raidz(path, aux, pool, size, ashift, r));
child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
for (c = 0; c < m; c++)
child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_MIRROR) == 0);
VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
child, m) == 0);
for (c = 0; c < m; c++)
nvlist_free(child[c]);
umem_free(child, m * sizeof (nvlist_t *));
return (mirror);
}
static nvlist_t *
make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
const char *class, int r, int m, int t)
{
nvlist_t *root, **child;
int c;
boolean_t log;
ASSERT(t > 0);
log = (class != NULL && strcmp(class, "log") == 0);
child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
for (c = 0; c < t; c++) {
child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
r, m);
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
log) == 0);
if (class != NULL && class[0] != '\0') {
ASSERT(m > 1 || log); /* expecting a mirror */
VERIFY(nvlist_add_string(child[c],
ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0);
}
}
VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
child, t) == 0);
for (c = 0; c < t; c++)
nvlist_free(child[c]);
umem_free(child, t * sizeof (nvlist_t *));
return (root);
}
/*
* Find a random spa version. Returns back a random spa version in the
* range [initial_version, SPA_VERSION_FEATURES].
*/
static uint64_t
ztest_random_spa_version(uint64_t initial_version)
{
uint64_t version = initial_version;
if (version <= SPA_VERSION_BEFORE_FEATURES) {
version = version +
ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
}
if (version > SPA_VERSION_BEFORE_FEATURES)
version = SPA_VERSION_FEATURES;
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
return (version);
}
static int
ztest_random_blocksize(void)
{
ASSERT(ztest_spa->spa_max_ashift != 0);
/*
* Choose a block size >= the ashift.
* If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
*/
int maxbs = SPA_OLD_MAXBLOCKSHIFT;
if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
maxbs = 20;
uint64_t block_shift =
ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
return (1 << (SPA_MINBLOCKSHIFT + block_shift));
}
static int
ztest_random_dnodesize(void)
{
int slots;
int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
if (max_slots == DNODE_MIN_SLOTS)
return (DNODE_MIN_SIZE);
/*
* Weight the random distribution more heavily toward smaller
* dnode sizes since that is more likely to reflect real-world
* usage.
*/
ASSERT3U(max_slots, >, 4);
switch (ztest_random(10)) {
case 0:
slots = 5 + ztest_random(max_slots - 4);
break;
case 1 ... 4:
slots = 2 + ztest_random(3);
break;
default:
slots = 1;
break;
}
return (slots << DNODE_SHIFT);
}
static int
ztest_random_ibshift(void)
{
return (DN_MIN_INDBLKSHIFT +
ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
}
static uint64_t
ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
{
uint64_t top;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *tvd;
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
do {
top = ztest_random(rvd->vdev_children);
tvd = rvd->vdev_child[top];
} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
return (top);
}
static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)
{
uint64_t value;
do {
value = zfs_prop_random_value(prop, ztest_random(-1ULL));
} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
return (value);
}
static int
ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
boolean_t inherit)
{
const char *propname = zfs_prop_to_name(prop);
const char *valname;
char *setpoint;
uint64_t curval;
int error;
error = dsl_prop_set_int(osname, propname,
(inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
return (error);
}
ASSERT0(error);
setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
if (ztest_opts.zo_verbose >= 6) {
int err;
err = zfs_prop_index_to_string(prop, curval, &valname);
if (err)
(void) printf("%s %s = %llu at '%s'\n", osname,
propname, (unsigned long long)curval, setpoint);
else
(void) printf("%s %s = %s at '%s'\n",
osname, propname, valname, setpoint);
}
umem_free(setpoint, MAXPATHLEN);
return (error);
}
static int
ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
{
spa_t *spa = ztest_spa;
nvlist_t *props = NULL;
int error;
VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
error = spa_prop_set(spa, props);
nvlist_free(props);
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
return (error);
}
ASSERT0(error);
return (error);
}
static int
ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
{
int err;
char *cp = NULL;
char ddname[ZFS_MAX_DATASET_NAME_LEN];
strcpy(ddname, name);
cp = strchr(ddname, '@');
if (cp != NULL)
*cp = '\0';
err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
while (decrypt && err == EACCES) {
dsl_crypto_params_t *dcp;
nvlist_t *crypto_args = fnvlist_alloc();
fnvlist_add_uint8_array(crypto_args, "wkeydata",
(uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
crypto_args, &dcp));
err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
dsl_crypto_params_free(dcp, B_FALSE);
fnvlist_free(crypto_args);
if (err == EINVAL) {
/*
* We couldn't load a key for this dataset so try
* the parent. This loop will eventually hit the
* encryption root since ztest only makes clones
* as children of their origin datasets.
*/
cp = strrchr(ddname, '/');
if (cp == NULL)
return (err);
*cp = '\0';
err = EACCES;
continue;
} else if (err != 0) {
break;
}
err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
break;
}
return (err);
}
static void
ztest_rll_init(rll_t *rll)
{
rll->rll_writer = NULL;
rll->rll_readers = 0;
mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
}
static void
ztest_rll_destroy(rll_t *rll)
{
ASSERT(rll->rll_writer == NULL);
ASSERT(rll->rll_readers == 0);
mutex_destroy(&rll->rll_lock);
cv_destroy(&rll->rll_cv);
}
static void
ztest_rll_lock(rll_t *rll, rl_type_t type)
{
mutex_enter(&rll->rll_lock);
if (type == RL_READER) {
while (rll->rll_writer != NULL)
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
rll->rll_readers++;
} else {
while (rll->rll_writer != NULL || rll->rll_readers)
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
rll->rll_writer = curthread;
}
mutex_exit(&rll->rll_lock);
}
static void
ztest_rll_unlock(rll_t *rll)
{
mutex_enter(&rll->rll_lock);
if (rll->rll_writer) {
ASSERT(rll->rll_readers == 0);
rll->rll_writer = NULL;
} else {
ASSERT(rll->rll_readers != 0);
ASSERT(rll->rll_writer == NULL);
rll->rll_readers--;
}
if (rll->rll_writer == NULL && rll->rll_readers == 0)
cv_broadcast(&rll->rll_cv);
mutex_exit(&rll->rll_lock);
}
static void
ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
{
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
ztest_rll_lock(rll, type);
}
static void
ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
{
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
ztest_rll_unlock(rll);
}
static rl_t *
ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
uint64_t size, rl_type_t type)
{
uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
rl_t *rl;
rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
rl->rl_object = object;
rl->rl_offset = offset;
rl->rl_size = size;
rl->rl_lock = rll;
ztest_rll_lock(rll, type);
return (rl);
}
static void
ztest_range_unlock(rl_t *rl)
{
rll_t *rll = rl->rl_lock;
ztest_rll_unlock(rll);
umem_free(rl, sizeof (*rl));
}
static void
ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
{
zd->zd_os = os;
zd->zd_zilog = dmu_objset_zil(os);
zd->zd_shared = szd;
dmu_objset_name(os, zd->zd_name);
int l;
if (zd->zd_shared != NULL)
zd->zd_shared->zd_seq = 0;
VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
ztest_rll_init(&zd->zd_object_lock[l]);
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
ztest_rll_init(&zd->zd_range_lock[l]);
}
static void
ztest_zd_fini(ztest_ds_t *zd)
{
int l;
mutex_destroy(&zd->zd_dirobj_lock);
(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
ztest_rll_destroy(&zd->zd_object_lock[l]);
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
ztest_rll_destroy(&zd->zd_range_lock[l]);
}
#define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
static uint64_t
ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
{
uint64_t txg;
int error;
/*
* Attempt to assign tx to some transaction group.
*/
error = dmu_tx_assign(tx, txg_how);
if (error) {
if (error == ERESTART) {
ASSERT(txg_how == TXG_NOWAIT);
dmu_tx_wait(tx);
} else {
ASSERT3U(error, ==, ENOSPC);
ztest_record_enospc(tag);
}
dmu_tx_abort(tx);
return (0);
}
txg = dmu_tx_get_txg(tx);
ASSERT(txg != 0);
return (txg);
}
static void
ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
uint64_t crtxg)
{
bt->bt_magic = BT_MAGIC;
bt->bt_objset = dmu_objset_id(os);
bt->bt_object = object;
bt->bt_dnodesize = dnodesize;
bt->bt_offset = offset;
bt->bt_gen = gen;
bt->bt_txg = txg;
bt->bt_crtxg = crtxg;
}
static void
ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
uint64_t crtxg)
{
ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
ASSERT3U(bt->bt_object, ==, object);
ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
ASSERT3U(bt->bt_offset, ==, offset);
ASSERT3U(bt->bt_gen, <=, gen);
ASSERT3U(bt->bt_txg, <=, txg);
ASSERT3U(bt->bt_crtxg, ==, crtxg);
}
static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t *db)
{
dmu_object_info_t doi;
ztest_block_tag_t *bt;
dmu_object_info_from_db(db, &doi);
ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
return (bt);
}
/*
* Generate a token to fill up unused bonus buffer space. Try to make
* it unique to the object, generation, and offset to verify that data
* is not getting overwritten by data from other dnodes.
*/
#define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
/*
* Fill up the unused bonus buffer region before the block tag with a
* verifiable pattern. Filling the whole bonus area with non-zero data
* helps ensure that all dnode traversal code properly skips the
* interior regions of large dnodes.
*/
static void
ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
objset_t *os, uint64_t gen)
{
uint64_t *bonusp;
ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
gen, bonusp - (uint64_t *)db->db_data);
*bonusp = token;
}
}
/*
* Verify that the unused area of a bonus buffer is filled with the
* expected tokens.
*/
static void
ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
objset_t *os, uint64_t gen)
{
uint64_t *bonusp;
for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
gen, bonusp - (uint64_t *)db->db_data);
VERIFY3U(*bonusp, ==, token);
}
}
/*
* ZIL logging ops
*/
#define lrz_type lr_mode
#define lrz_blocksize lr_uid
#define lrz_ibshift lr_gid
#define lrz_bonustype lr_rdev
#define lrz_dnodesize lr_crtime[1]
static void
ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
{
char *name = (void *)(lr + 1); /* name follows lr */
size_t namesize = strlen(name) + 1;
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
sizeof (*lr) + namesize - sizeof (lr_t));
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
{
char *name = (void *)(lr + 1); /* name follows lr */
size_t namesize = strlen(name) + 1;
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
sizeof (*lr) + namesize - sizeof (lr_t));
itx->itx_oid = object;
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
{
itx_t *itx;
itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
if (zil_replaying(zd->zd_zilog, tx))
return;
if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
write_state = WR_INDIRECT;
itx = zil_itx_create(TX_WRITE,
sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
if (write_state == WR_COPIED &&
dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
zil_itx_destroy(itx);
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
write_state = WR_NEED_COPY;
}
itx->itx_private = zd;
itx->itx_wr_state = write_state;
itx->itx_sync = (ztest_random(8) == 0);
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
sizeof (*lr) - sizeof (lr_t));
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
{
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
sizeof (*lr) - sizeof (lr_t));
itx->itx_sync = B_FALSE;
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
{
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
sizeof (*lr) - sizeof (lr_t));
itx->itx_sync = B_FALSE;
zil_itx_assign(zd->zd_zilog, itx, tx);
}
/*
* ZIL replay ops
*/
static int
ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
{
ztest_ds_t *zd = arg1;
lr_create_t *lr = arg2;
char *name = (void *)(lr + 1); /* name follows lr */
objset_t *os = zd->zd_os;
ztest_block_tag_t *bbt;
dmu_buf_t *db;
dmu_tx_t *tx;
uint64_t txg;
int error = 0;
int bonuslen;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
ASSERT(lr->lr_doid == ZTEST_DIROBJ);
ASSERT(name[0] != '\0');
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
} else {
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
}
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0)
return (ENOSPC);
ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
if (lr->lr_foid == 0) {
lr->lr_foid = zap_create_dnsize(os,
lr->lrz_type, lr->lrz_bonustype,
bonuslen, lr->lrz_dnodesize, tx);
} else {
error = zap_create_claim_dnsize(os, lr->lr_foid,
lr->lrz_type, lr->lrz_bonustype,
bonuslen, lr->lrz_dnodesize, tx);
}
} else {
if (lr->lr_foid == 0) {
lr->lr_foid = dmu_object_alloc_dnsize(os,
lr->lrz_type, 0, lr->lrz_bonustype,
bonuslen, lr->lrz_dnodesize, tx);
} else {
error = dmu_object_claim_dnsize(os, lr->lr_foid,
lr->lrz_type, 0, lr->lrz_bonustype,
bonuslen, lr->lrz_dnodesize, tx);
}
}
if (error) {
ASSERT3U(error, ==, EEXIST);
ASSERT(zd->zd_zilog->zl_replay);
dmu_tx_commit(tx);
return (error);
}
ASSERT(lr->lr_foid != 0);
if (lr->lrz_type != DMU_OT_ZAP_OTHER)
VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
lr->lrz_blocksize, lr->lrz_ibshift, tx));
VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
bbt = ztest_bt_bonus(db);
dmu_buf_will_dirty(db, tx);
ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
lr->lr_gen, txg, txg);
ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
dmu_buf_rele(db, FTAG);
VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
&lr->lr_foid, tx));
(void) ztest_log_create(zd, tx, lr);
dmu_tx_commit(tx);
return (0);
}
static int
ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
{
ztest_ds_t *zd = arg1;
lr_remove_t *lr = arg2;
char *name = (void *)(lr + 1); /* name follows lr */
objset_t *os = zd->zd_os;
dmu_object_info_t doi;
dmu_tx_t *tx;
uint64_t object, txg;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
ASSERT(lr->lr_doid == ZTEST_DIROBJ);
ASSERT(name[0] != '\0');
VERIFY3U(0, ==,
zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
ASSERT(object != 0);
ztest_object_lock(zd, object, RL_WRITER);
VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
ztest_object_unlock(zd, object);
return (ENOSPC);
}
if (doi.doi_type == DMU_OT_ZAP_OTHER) {
VERIFY3U(0, ==, zap_destroy(os, object, tx));
} else {
VERIFY3U(0, ==, dmu_object_free(os, object, tx));
}
VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
(void) ztest_log_remove(zd, tx, lr, object);
dmu_tx_commit(tx);
ztest_object_unlock(zd, object);
return (0);
}
static int
ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
{
ztest_ds_t *zd = arg1;
lr_write_t *lr = arg2;
objset_t *os = zd->zd_os;
void *data = lr + 1; /* data follows lr */
uint64_t offset, length;
ztest_block_tag_t *bt = data;
ztest_block_tag_t *bbt;
uint64_t gen, txg, lrtxg, crtxg;
dmu_object_info_t doi;
dmu_tx_t *tx;
dmu_buf_t *db;
arc_buf_t *abuf = NULL;
rl_t *rl;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
offset = lr->lr_offset;
length = lr->lr_length;
/* If it's a dmu_sync() block, write the whole block */
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
if (length < blocksize) {
offset -= offset % blocksize;
length = blocksize;
}
}
if (bt->bt_magic == BSWAP_64(BT_MAGIC))
byteswap_uint64_array(bt, sizeof (*bt));
if (bt->bt_magic != BT_MAGIC)
bt = NULL;
ztest_object_lock(zd, lr->lr_foid, RL_READER);
rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
dmu_object_info_from_db(db, &doi);
bbt = ztest_bt_bonus(db);
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
gen = bbt->bt_gen;
crtxg = bbt->bt_crtxg;
lrtxg = lr->lr_common.lrc_txg;
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
P2PHASE(offset, length) == 0)
abuf = dmu_request_arcbuf(db, length);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
if (abuf != NULL)
dmu_return_arcbuf(abuf);
dmu_buf_rele(db, FTAG);
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (ENOSPC);
}
if (bt != NULL) {
/*
* Usually, verify the old data before writing new data --
* but not always, because we also want to verify correct
* behavior when the data was not recently read into cache.
*/
ASSERT(offset % doi.doi_data_block_size == 0);
if (ztest_random(4) != 0) {
int prefetch = ztest_random(2) ?
DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
ztest_block_tag_t rbt;
VERIFY(dmu_read(os, lr->lr_foid, offset,
sizeof (rbt), &rbt, prefetch) == 0);
if (rbt.bt_magic == BT_MAGIC) {
ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
offset, gen, txg, crtxg);
}
}
/*
* Writes can appear to be newer than the bonus buffer because
* the ztest_get_data() callback does a dmu_read() of the
* open-context data, which may be different than the data
* as it was when the write was generated.
*/
if (zd->zd_zilog->zl_replay) {
ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
bt->bt_crtxg);
}
/*
* Set the bt's gen/txg to the bonus buffer's gen/txg
* so that all of the usual ASSERTs will work.
*/
ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
crtxg);
}
if (abuf == NULL) {
dmu_write(os, lr->lr_foid, offset, length, data, tx);
} else {
bcopy(data, abuf->b_data, length);
dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
}
(void) ztest_log_write(zd, tx, lr);
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (0);
}
static int
ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
{
ztest_ds_t *zd = arg1;
lr_truncate_t *lr = arg2;
objset_t *os = zd->zd_os;
dmu_tx_t *tx;
uint64_t txg;
rl_t *rl;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
ztest_object_lock(zd, lr->lr_foid, RL_READER);
rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
RL_WRITER);
tx = dmu_tx_create(os);
dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (ENOSPC);
}
VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
lr->lr_length, tx) == 0);
(void) ztest_log_truncate(zd, tx, lr);
dmu_tx_commit(tx);
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (0);
}
static int
ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
{
ztest_ds_t *zd = arg1;
lr_setattr_t *lr = arg2;
objset_t *os = zd->zd_os;
dmu_tx_t *tx;
dmu_buf_t *db;
ztest_block_tag_t *bbt;
uint64_t txg, lrtxg, crtxg, dnodesize;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
tx = dmu_tx_create(os);
dmu_tx_hold_bonus(tx, lr->lr_foid);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, lr->lr_foid);
return (ENOSPC);
}
bbt = ztest_bt_bonus(db);
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
crtxg = bbt->bt_crtxg;
lrtxg = lr->lr_common.lrc_txg;
dnodesize = bbt->bt_dnodesize;
if (zd->zd_zilog->zl_replay) {
ASSERT(lr->lr_size != 0);
ASSERT(lr->lr_mode != 0);
ASSERT(lrtxg != 0);
} else {
/*
* Randomly change the size and increment the generation.
*/
lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
sizeof (*bbt);
lr->lr_mode = bbt->bt_gen + 1;
ASSERT(lrtxg == 0);
}
/*
* Verify that the current bonus buffer is not newer than our txg.
*/
ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
MAX(txg, lrtxg), crtxg);
dmu_buf_will_dirty(db, tx);
ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
ASSERT3U(lr->lr_size, <=, db->db_size);
VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
bbt = ztest_bt_bonus(db);
ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
txg, crtxg);
ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
dmu_buf_rele(db, FTAG);
(void) ztest_log_setattr(zd, tx, lr);
dmu_tx_commit(tx);
ztest_object_unlock(zd, lr->lr_foid);
return (0);
}
zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
NULL, /* 0 no such transaction type */
ztest_replay_create, /* TX_CREATE */
NULL, /* TX_MKDIR */
NULL, /* TX_MKXATTR */
NULL, /* TX_SYMLINK */
ztest_replay_remove, /* TX_REMOVE */
NULL, /* TX_RMDIR */
NULL, /* TX_LINK */
NULL, /* TX_RENAME */
ztest_replay_write, /* TX_WRITE */
ztest_replay_truncate, /* TX_TRUNCATE */
ztest_replay_setattr, /* TX_SETATTR */
NULL, /* TX_ACL */
NULL, /* TX_CREATE_ACL */
NULL, /* TX_CREATE_ATTR */
NULL, /* TX_CREATE_ACL_ATTR */
NULL, /* TX_MKDIR_ACL */
NULL, /* TX_MKDIR_ATTR */
NULL, /* TX_MKDIR_ACL_ATTR */
NULL, /* TX_WRITE2 */
};
/*
* ZIL get_data callbacks
*/
/* ARGSUSED */
static void
ztest_get_done(zgd_t *zgd, int error)
{
ztest_ds_t *zd = zgd->zgd_private;
uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
if (zgd->zgd_db)
dmu_buf_rele(zgd->zgd_db, zgd);
ztest_range_unlock((rl_t *)zgd->zgd_lr);
ztest_object_unlock(zd, object);
umem_free(zgd, sizeof (*zgd));
}
static int
ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
zio_t *zio)
{
ztest_ds_t *zd = arg;
objset_t *os = zd->zd_os;
uint64_t object = lr->lr_foid;
uint64_t offset = lr->lr_offset;
uint64_t size = lr->lr_length;
uint64_t txg = lr->lr_common.lrc_txg;
uint64_t crtxg;
dmu_object_info_t doi;
dmu_buf_t *db;
zgd_t *zgd;
int error;
ASSERT3P(lwb, !=, NULL);
ASSERT3P(zio, !=, NULL);
ASSERT3U(size, !=, 0);
ztest_object_lock(zd, object, RL_READER);
error = dmu_bonus_hold(os, object, FTAG, &db);
if (error) {
ztest_object_unlock(zd, object);
return (error);
}
crtxg = ztest_bt_bonus(db)->bt_crtxg;
if (crtxg == 0 || crtxg > txg) {
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, object);
return (ENOENT);
}
dmu_object_info_from_db(db, &doi);
dmu_buf_rele(db, FTAG);
db = NULL;
zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
zgd->zgd_lwb = lwb;
zgd->zgd_private = zd;
if (buf != NULL) { /* immediate write */
zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
object, offset, size, RL_READER);
error = dmu_read(os, object, offset, size, buf,
DMU_READ_NO_PREFETCH);
ASSERT(error == 0);
} else {
size = doi.doi_data_block_size;
if (ISP2(size)) {
offset = P2ALIGN(offset, size);
} else {
ASSERT(offset < size);
offset = 0;
}
zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
object, offset, size, RL_READER);
error = dmu_buf_hold(os, object, offset, zgd, &db,
DMU_READ_NO_PREFETCH);
if (error == 0) {
blkptr_t *bp = &lr->lr_blkptr;
zgd->zgd_db = db;
zgd->zgd_bp = bp;
ASSERT(db->db_offset == offset);
ASSERT(db->db_size == size);
error = dmu_sync(zio, lr->lr_common.lrc_txg,
ztest_get_done, zgd);
if (error == 0)
return (0);
}
}
ztest_get_done(zgd, error);
return (error);
}
static void *
ztest_lr_alloc(size_t lrsize, char *name)
{
char *lr;
size_t namesize = name ? strlen(name) + 1 : 0;
lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
if (name)
bcopy(name, lr + lrsize, namesize);
return (lr);
}
static void
ztest_lr_free(void *lr, size_t lrsize, char *name)
{
size_t namesize = name ? strlen(name) + 1 : 0;
umem_free(lr, lrsize + namesize);
}
/*
* Lookup a bunch of objects. Returns the number of objects not found.
*/
static int
ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
{
int missing = 0;
int error;
int i;
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
for (i = 0; i < count; i++, od++) {
od->od_object = 0;
error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
sizeof (uint64_t), 1, &od->od_object);
if (error) {
ASSERT(error == ENOENT);
ASSERT(od->od_object == 0);
missing++;
} else {
dmu_buf_t *db;
ztest_block_tag_t *bbt;
dmu_object_info_t doi;
ASSERT(od->od_object != 0);
ASSERT(missing == 0); /* there should be no gaps */
ztest_object_lock(zd, od->od_object, RL_READER);
VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
od->od_object, FTAG, &db));
dmu_object_info_from_db(db, &doi);
bbt = ztest_bt_bonus(db);
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
od->od_type = doi.doi_type;
od->od_blocksize = doi.doi_data_block_size;
od->od_gen = bbt->bt_gen;
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, od->od_object);
}
}
return (missing);
}
static int
ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
{
int missing = 0;
int i;
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
for (i = 0; i < count; i++, od++) {
if (missing) {
od->od_object = 0;
missing++;
continue;
}
lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
lr->lr_doid = od->od_dir;
lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
lr->lrz_type = od->od_crtype;
lr->lrz_blocksize = od->od_crblocksize;
lr->lrz_ibshift = ztest_random_ibshift();
lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
lr->lrz_dnodesize = od->od_crdnodesize;
lr->lr_gen = od->od_crgen;
lr->lr_crtime[0] = time(NULL);
if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
ASSERT(missing == 0);
od->od_object = 0;
missing++;
} else {
od->od_object = lr->lr_foid;
od->od_type = od->od_crtype;
od->od_blocksize = od->od_crblocksize;
od->od_gen = od->od_crgen;
ASSERT(od->od_object != 0);
}
ztest_lr_free(lr, sizeof (*lr), od->od_name);
}
return (missing);
}
static int
ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
{
int missing = 0;
int error;
int i;
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
od += count - 1;
for (i = count - 1; i >= 0; i--, od--) {
if (missing) {
missing++;
continue;
}
/*
* No object was found.
*/
if (od->od_object == 0)
continue;
lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
lr->lr_doid = od->od_dir;
if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
ASSERT3U(error, ==, ENOSPC);
missing++;
} else {
od->od_object = 0;
}
ztest_lr_free(lr, sizeof (*lr), od->od_name);
}
return (missing);
}
static int
ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
void *data)
{
lr_write_t *lr;
int error;
lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
lr->lr_foid = object;
lr->lr_offset = offset;
lr->lr_length = size;
lr->lr_blkoff = 0;
BP_ZERO(&lr->lr_blkptr);
bcopy(data, lr + 1, size);
error = ztest_replay_write(zd, lr, B_FALSE);
ztest_lr_free(lr, sizeof (*lr) + size, NULL);
return (error);
}
static int
ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
{
lr_truncate_t *lr;
int error;
lr = ztest_lr_alloc(sizeof (*lr), NULL);
lr->lr_foid = object;
lr->lr_offset = offset;
lr->lr_length = size;
error = ztest_replay_truncate(zd, lr, B_FALSE);
ztest_lr_free(lr, sizeof (*lr), NULL);
return (error);
}
static int
ztest_setattr(ztest_ds_t *zd, uint64_t object)
{
lr_setattr_t *lr;
int error;
lr = ztest_lr_alloc(sizeof (*lr), NULL);
lr->lr_foid = object;
lr->lr_size = 0;
lr->lr_mode = 0;
error = ztest_replay_setattr(zd, lr, B_FALSE);
ztest_lr_free(lr, sizeof (*lr), NULL);
return (error);
}
static void
ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
{
objset_t *os = zd->zd_os;
dmu_tx_t *tx;
uint64_t txg;
rl_t *rl;
txg_wait_synced(dmu_objset_pool(os), 0);
ztest_object_lock(zd, object, RL_READER);
rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, object, offset, size);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg != 0) {
dmu_prealloc(os, object, offset, size, tx);
dmu_tx_commit(tx);
txg_wait_synced(dmu_objset_pool(os), txg);
} else {
(void) dmu_free_long_range(os, object, offset, size);
}
ztest_range_unlock(rl);
ztest_object_unlock(zd, object);
}
static void
ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
{
int err;
ztest_block_tag_t wbt;
dmu_object_info_t doi;
enum ztest_io_type io_type;
uint64_t blocksize;
void *data;
VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
blocksize = doi.doi_data_block_size;
data = umem_alloc(blocksize, UMEM_NOFAIL);
/*
* Pick an i/o type at random, biased toward writing block tags.
*/
io_type = ztest_random(ZTEST_IO_TYPES);
if (ztest_random(2) == 0)
io_type = ZTEST_IO_WRITE_TAG;
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
switch (io_type) {
case ZTEST_IO_WRITE_TAG:
ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
offset, 0, 0, 0);
(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
break;
case ZTEST_IO_WRITE_PATTERN:
(void) memset(data, 'a' + (object + offset) % 5, blocksize);
if (ztest_random(2) == 0) {
/*
* Induce fletcher2 collisions to ensure that
* zio_ddt_collision() detects and resolves them
* when using fletcher2-verify for deduplication.
*/
((uint64_t *)data)[0] ^= 1ULL << 63;
((uint64_t *)data)[4] ^= 1ULL << 63;
}
(void) ztest_write(zd, object, offset, blocksize, data);
break;
case ZTEST_IO_WRITE_ZEROES:
bzero(data, blocksize);
(void) ztest_write(zd, object, offset, blocksize, data);
break;
case ZTEST_IO_TRUNCATE:
(void) ztest_truncate(zd, object, offset, blocksize);
break;
case ZTEST_IO_SETATTR:
(void) ztest_setattr(zd, object);
break;
default:
break;
case ZTEST_IO_REWRITE:
(void) pthread_rwlock_rdlock(&ztest_name_lock);
err = ztest_dsl_prop_set_uint64(zd->zd_name,
ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
B_FALSE);
VERIFY(err == 0 || err == ENOSPC);
err = ztest_dsl_prop_set_uint64(zd->zd_name,
ZFS_PROP_COMPRESSION,
ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
B_FALSE);
VERIFY(err == 0 || err == ENOSPC);
(void) pthread_rwlock_unlock(&ztest_name_lock);
VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
DMU_READ_NO_PREFETCH));
(void) ztest_write(zd, object, offset, blocksize, data);
break;
}
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
umem_free(data, blocksize);
}
/*
* Initialize an object description template.
*/
static void
ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
uint64_t gen)
{
od->od_dir = ZTEST_DIROBJ;
od->od_object = 0;
od->od_crtype = type;
od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
od->od_crgen = gen;
od->od_type = DMU_OT_NONE;
od->od_blocksize = 0;
od->od_gen = 0;
(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
tag, (longlong_t)id, (u_longlong_t)index);
}
/*
* Lookup or create the objects for a test using the od template.
* If the objects do not all exist, or if 'remove' is specified,
* remove any existing objects and create new ones. Otherwise,
* use the existing objects.
*/
static int
ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
{
int count = size / sizeof (*od);
int rv = 0;
mutex_enter(&zd->zd_dirobj_lock);
if ((ztest_lookup(zd, od, count) != 0 || remove) &&
(ztest_remove(zd, od, count) != 0 ||
ztest_create(zd, od, count) != 0))
rv = -1;
zd->zd_od = od;
mutex_exit(&zd->zd_dirobj_lock);
return (rv);
}
/* ARGSUSED */
void
ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
{
zilog_t *zilog = zd->zd_zilog;
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
/*
* Remember the committed values in zd, which is in parent/child
* shared memory. If we die, the next iteration of ztest_run()
* will verify that the log really does contain this record.
*/
mutex_enter(&zilog->zl_lock);
ASSERT(zd->zd_shared != NULL);
ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
mutex_exit(&zilog->zl_lock);
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
}
/*
* This function is designed to simulate the operations that occur during a
* mount/unmount operation. We hold the dataset across these operations in an
* attempt to expose any implicit assumptions about ZIL management.
*/
/* ARGSUSED */
void
ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
/*
* We hold the ztest_vdev_lock so we don't cause problems with
* other threads that wish to remove a log device, such as
* ztest_device_removal().
*/
mutex_enter(&ztest_vdev_lock);
/*
* We grab the zd_dirobj_lock to ensure that no other thread is
* updating the zil (i.e. adding in-memory log records) and the
* zd_zilog_lock to block any I/O.
*/
mutex_enter(&zd->zd_dirobj_lock);
(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
/* zfsvfs_teardown() */
zil_close(zd->zd_zilog);
/* zfsvfs_setup() */
VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
zil_replay(os, zd, ztest_replay_vector);
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
mutex_exit(&zd->zd_dirobj_lock);
mutex_exit(&ztest_vdev_lock);
}
/*
* Verify that we can't destroy an active pool, create an existing pool,
* or create a pool with a bad vdev spec.
*/
/* ARGSUSED */
void
ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_opts_t *zo = &ztest_opts;
spa_t *spa;
nvlist_t *nvroot;
if (zo->zo_mmp_test)
return;
/*
* Attempt to create using a bad file.
*/
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
VERIFY3U(ENOENT, ==,
spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
nvlist_free(nvroot);
/*
* Attempt to create using a bad mirror.
*/
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
VERIFY3U(ENOENT, ==,
spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
nvlist_free(nvroot);
/*
* Attempt to create an existing pool. It shouldn't matter
* what's in the nvroot; we should fail with EEXIST.
*/
(void) pthread_rwlock_rdlock(&ztest_name_lock);
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
VERIFY3U(EEXIST, ==,
spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
nvlist_free(nvroot);
/*
* We open a reference to the spa and then we try to export it
* expecting one of the following errors:
*
* EBUSY
* Because of the reference we just opened.
*
* ZFS_ERR_EXPORT_IN_PROGRESS
* For the case that there is another ztest thread doing
* an export concurrently.
*/
VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
int error = spa_destroy(zo->zo_pool);
if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
fatal(0, "spa_destroy(%s) returned unexpected value %d",
spa->spa_name, error);
}
spa_close(spa, FTAG);
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
/*
* Start and then stop the MMP threads to ensure the startup and shutdown code
* works properly. Actual protection and property-related code tested via ZTS.
*/
/* ARGSUSED */
void
ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_opts_t *zo = &ztest_opts;
spa_t *spa = ztest_spa;
if (zo->zo_mmp_test)
return;
/*
* Since enabling MMP involves setting a property, it could not be done
* while the pool is suspended.
*/
if (spa_suspended(spa))
return;
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
mutex_enter(&spa->spa_props_lock);
zfs_multihost_fail_intervals = 0;
if (!spa_multihost(spa)) {
spa->spa_multihost = B_TRUE;
mmp_thread_start(spa);
}
mutex_exit(&spa->spa_props_lock);
spa_config_exit(spa, SCL_CONFIG, FTAG);
txg_wait_synced(spa_get_dsl(spa), 0);
mmp_signal_all_threads();
txg_wait_synced(spa_get_dsl(spa), 0);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
mutex_enter(&spa->spa_props_lock);
if (spa_multihost(spa)) {
mmp_thread_stop(spa);
spa->spa_multihost = B_FALSE;
}
mutex_exit(&spa->spa_props_lock);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
/* ARGSUSED */
void
ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa;
uint64_t initial_version = SPA_VERSION_INITIAL;
uint64_t version, newversion;
nvlist_t *nvroot, *props;
char *name;
if (ztest_opts.zo_mmp_test)
return;
mutex_enter(&ztest_vdev_lock);
name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
/*
* Clean up from previous runs.
*/
(void) spa_destroy(name);
nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
/*
* If we're configuring a RAIDZ device then make sure that the
* initial version is capable of supporting that feature.
*/
switch (ztest_opts.zo_raidz_parity) {
case 0:
case 1:
initial_version = SPA_VERSION_INITIAL;
break;
case 2:
initial_version = SPA_VERSION_RAIDZ2;
break;
case 3:
initial_version = SPA_VERSION_RAIDZ3;
break;
}
/*
* Create a pool with a spa version that can be upgraded. Pick
* a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
*/
do {
version = ztest_random_spa_version(initial_version);
} while (version > SPA_VERSION_BEFORE_FEATURES);
props = fnvlist_alloc();
fnvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
VERIFY3S(spa_create(name, nvroot, props, NULL, NULL), ==, 0);
fnvlist_free(nvroot);
fnvlist_free(props);
VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
VERIFY3U(spa_version(spa), ==, version);
newversion = ztest_random_spa_version(version + 1);
if (ztest_opts.zo_verbose >= 4) {
(void) printf("upgrading spa version from %llu to %llu\n",
(u_longlong_t)version, (u_longlong_t)newversion);
}
spa_upgrade(spa, newversion);
VERIFY3U(spa_version(spa), >, version);
VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
zpool_prop_to_name(ZPOOL_PROP_VERSION)));
spa_close(spa, FTAG);
kmem_strfree(name);
mutex_exit(&ztest_vdev_lock);
}
static void
ztest_spa_checkpoint(spa_t *spa)
{
ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
int error = spa_checkpoint(spa->spa_name);
switch (error) {
case 0:
case ZFS_ERR_DEVRM_IN_PROGRESS:
case ZFS_ERR_DISCARDING_CHECKPOINT:
case ZFS_ERR_CHECKPOINT_EXISTS:
break;
case ENOSPC:
ztest_record_enospc(FTAG);
break;
default:
fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
}
}
static void
ztest_spa_discard_checkpoint(spa_t *spa)
{
ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
int error = spa_checkpoint_discard(spa->spa_name);
switch (error) {
case 0:
case ZFS_ERR_DISCARDING_CHECKPOINT:
case ZFS_ERR_NO_CHECKPOINT:
break;
default:
fatal(0, "spa_discard_checkpoint(%s) = %d",
spa->spa_name, error);
}
}
/* ARGSUSED */
void
ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa = ztest_spa;
mutex_enter(&ztest_checkpoint_lock);
if (ztest_random(2) == 0) {
ztest_spa_checkpoint(spa);
} else {
ztest_spa_discard_checkpoint(spa);
}
mutex_exit(&ztest_checkpoint_lock);
}
static vdev_t *
vdev_lookup_by_path(vdev_t *vd, const char *path)
{
vdev_t *mvd;
int c;
if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
return (vd);
for (c = 0; c < vd->vdev_children; c++)
if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
NULL)
return (mvd);
return (NULL);
}
static int
spa_num_top_vdevs(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
return (rvd->vdev_children);
}
/*
* Verify that vdev_add() works as expected.
*/
/* ARGSUSED */
void
ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
uint64_t leaves;
uint64_t guid;
nvlist_t *nvroot;
int error;
if (ztest_opts.zo_mmp_test)
return;
mutex_enter(&ztest_vdev_lock);
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
/*
* If we have slogs then remove them 1/4 of the time.
*/
if (spa_has_slogs(spa) && ztest_random(4) == 0) {
metaslab_group_t *mg;
/*
* find the first real slog in log allocation class
*/
mg = spa_log_class(spa)->mc_rotor;
while (!mg->mg_vd->vdev_islog)
mg = mg->mg_next;
guid = mg->mg_vd->vdev_guid;
spa_config_exit(spa, SCL_VDEV, FTAG);
/*
* We have to grab the zs_name_lock as writer to
* prevent a race between removing a slog (dmu_objset_find)
* and destroying a dataset. Removing the slog will
* grab a reference on the dataset which may cause
* dsl_destroy_head() to fail with EBUSY thus
* leaving the dataset in an inconsistent state.
*/
pthread_rwlock_wrlock(&ztest_name_lock);
error = spa_vdev_remove(spa, guid, B_FALSE);
pthread_rwlock_unlock(&ztest_name_lock);
switch (error) {
case 0:
case EEXIST: /* Generic zil_reset() error */
case EBUSY: /* Replay required */
case EACCES: /* Crypto key not loaded */
case ZFS_ERR_CHECKPOINT_EXISTS:
case ZFS_ERR_DISCARDING_CHECKPOINT:
break;
default:
fatal(0, "spa_vdev_remove() = %d", error);
}
} else {
spa_config_exit(spa, SCL_VDEV, FTAG);
/*
* Make 1/4 of the devices be log devices
*/
nvroot = make_vdev_root(NULL, NULL, NULL,
ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
"log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
error = spa_vdev_add(spa, nvroot);
nvlist_free(nvroot);
switch (error) {
case 0:
break;
case ENOSPC:
ztest_record_enospc("spa_vdev_add");
break;
default:
fatal(0, "spa_vdev_add() = %d", error);
}
}
mutex_exit(&ztest_vdev_lock);
}
/* ARGSUSED */
void
ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
uint64_t leaves;
nvlist_t *nvroot;
const char *class = (ztest_random(2) == 0) ?
VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
int error;
/*
* By default add a special vdev 50% of the time
*/
if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
(ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
ztest_random(2) == 0)) {
return;
}
mutex_enter(&ztest_vdev_lock);
/* Only test with mirrors */
if (zs->zs_mirrors < 2) {
mutex_exit(&ztest_vdev_lock);
return;
}
/* requires feature@allocation_classes */
if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
mutex_exit(&ztest_vdev_lock);
return;
}
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
spa_config_exit(spa, SCL_VDEV, FTAG);
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
class, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
error = spa_vdev_add(spa, nvroot);
nvlist_free(nvroot);
if (error == ENOSPC)
ztest_record_enospc("spa_vdev_add");
else if (error != 0)
fatal(0, "spa_vdev_add() = %d", error);
/*
* 50% of the time allow small blocks in the special class
*/
if (error == 0 &&
spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
if (ztest_opts.zo_verbose >= 3)
(void) printf("Enabling special VDEV small blocks\n");
(void) ztest_dsl_prop_set_uint64(zd->zd_name,
ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
}
mutex_exit(&ztest_vdev_lock);
if (ztest_opts.zo_verbose >= 3) {
metaslab_class_t *mc;
if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
mc = spa_special_class(spa);
else
mc = spa_dedup_class(spa);
(void) printf("Added a %s mirrored vdev (of %d)\n",
class, (int)mc->mc_groups);
}
}
/*
* Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
*/
/* ARGSUSED */
void
ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
vdev_t *rvd = spa->spa_root_vdev;
spa_aux_vdev_t *sav;
char *aux;
char *path;
uint64_t guid = 0;
int error;
if (ztest_opts.zo_mmp_test)
return;
path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
if (ztest_random(2) == 0) {
sav = &spa->spa_spares;
aux = ZPOOL_CONFIG_SPARES;
} else {
sav = &spa->spa_l2cache;
aux = ZPOOL_CONFIG_L2CACHE;
}
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
if (sav->sav_count != 0 && ztest_random(4) == 0) {
/*
* Pick a random device to remove.
*/
guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
} else {
/*
* Find an unused device we can add.
*/
zs->zs_vdev_aux = 0;
for (;;) {
int c;
(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
zs->zs_vdev_aux);
for (c = 0; c < sav->sav_count; c++)
if (strcmp(sav->sav_vdevs[c]->vdev_path,
path) == 0)
break;
if (c == sav->sav_count &&
vdev_lookup_by_path(rvd, path) == NULL)
break;
zs->zs_vdev_aux++;
}
}
spa_config_exit(spa, SCL_VDEV, FTAG);
if (guid == 0) {
/*
* Add a new device.
*/
nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
(ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
error = spa_vdev_add(spa, nvroot);
switch (error) {
case 0:
break;
default:
fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
}
nvlist_free(nvroot);
} else {
/*
* Remove an existing device. Sometimes, dirty its
* vdev state first to make sure we handle removal
* of devices that have pending state changes.
*/
if (ztest_random(2) == 0)
(void) vdev_online(spa, guid, 0, NULL);
error = spa_vdev_remove(spa, guid, B_FALSE);
switch (error) {
case 0:
case EBUSY:
case ZFS_ERR_CHECKPOINT_EXISTS:
case ZFS_ERR_DISCARDING_CHECKPOINT:
break;
default:
fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
}
}
mutex_exit(&ztest_vdev_lock);
umem_free(path, MAXPATHLEN);
}
/*
* split a pool if it has mirror tlvdevs
*/
/* ARGSUSED */
void
ztest_split_pool(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
vdev_t *rvd = spa->spa_root_vdev;
nvlist_t *tree, **child, *config, *split, **schild;
uint_t c, children, schildren = 0, lastlogid = 0;
int error = 0;
if (ztest_opts.zo_mmp_test)
return;
mutex_enter(&ztest_vdev_lock);
/* ensure we have a usable config; mirrors of raidz aren't supported */
if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
mutex_exit(&ztest_vdev_lock);
return;
}
/* clean up the old pool, if any */
(void) spa_destroy("splitp");
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
/* generate a config from the existing config */
mutex_enter(&spa->spa_props_lock);
VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
&tree) == 0);
mutex_exit(&spa->spa_props_lock);
VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
&children) == 0);
schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
for (c = 0; c < children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
nvlist_t **mchild;
uint_t mchildren;
if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
0) == 0);
VERIFY(nvlist_add_string(schild[schildren],
ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
VERIFY(nvlist_add_uint64(schild[schildren],
ZPOOL_CONFIG_IS_HOLE, 1) == 0);
if (lastlogid == 0)
lastlogid = schildren;
++schildren;
continue;
}
lastlogid = 0;
VERIFY(nvlist_lookup_nvlist_array(child[c],
ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
}
/* OK, create a config that can be used to split */
VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_ROOT) == 0);
VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
lastlogid != 0 ? lastlogid : schildren) == 0);
VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
for (c = 0; c < schildren; c++)
nvlist_free(schild[c]);
free(schild);
nvlist_free(split);
spa_config_exit(spa, SCL_VDEV, FTAG);
(void) pthread_rwlock_wrlock(&ztest_name_lock);
error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
(void) pthread_rwlock_unlock(&ztest_name_lock);
nvlist_free(config);
if (error == 0) {
(void) printf("successful split - results:\n");
mutex_enter(&spa_namespace_lock);
show_pool_stats(spa);
show_pool_stats(spa_lookup("splitp"));
mutex_exit(&spa_namespace_lock);
++zs->zs_splits;
--zs->zs_mirrors;
}
mutex_exit(&ztest_vdev_lock);
}
/*
* Verify that we can attach and detach devices.
*/
/* ARGSUSED */
void
ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
spa_aux_vdev_t *sav = &spa->spa_spares;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *oldvd, *newvd, *pvd;
nvlist_t *root;
uint64_t leaves;
uint64_t leaf, top;
uint64_t ashift = ztest_get_ashift();
uint64_t oldguid, pguid;
uint64_t oldsize, newsize;
char *oldpath, *newpath;
int replacing;
int oldvd_has_siblings = B_FALSE;
int newvd_is_spare = B_FALSE;
int oldvd_is_log;
int error, expected_error;
if (ztest_opts.zo_mmp_test)
return;
oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
mutex_enter(&ztest_vdev_lock);
leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
/*
* If a vdev is in the process of being removed, its removal may
* finish while we are in progress, leading to an unexpected error
* value. Don't bother trying to attach while we are in the middle
* of removal.
*/
if (ztest_device_removal_active) {
spa_config_exit(spa, SCL_ALL, FTAG);
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* Decide whether to do an attach or a replace.
*/
replacing = ztest_random(2);
/*
* Pick a random top-level vdev.
*/
top = ztest_random_vdev_top(spa, B_TRUE);
/*
* Pick a random leaf within it.
*/
leaf = ztest_random(leaves);
/*
* Locate this vdev.
*/
oldvd = rvd->vdev_child[top];
/* pick a child from the mirror */
if (zs->zs_mirrors >= 1) {
ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
}
/* pick a child out of the raidz group */
if (ztest_opts.zo_raidz > 1) {
ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
}
/*
* If we're already doing an attach or replace, oldvd may be a
* mirror vdev -- in which case, pick a random child.
*/
while (oldvd->vdev_children != 0) {
oldvd_has_siblings = B_TRUE;
ASSERT(oldvd->vdev_children >= 2);
oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
}
oldguid = oldvd->vdev_guid;
oldsize = vdev_get_min_asize(oldvd);
oldvd_is_log = oldvd->vdev_top->vdev_islog;
(void) strcpy(oldpath, oldvd->vdev_path);
pvd = oldvd->vdev_parent;
pguid = pvd->vdev_guid;
/*
* If oldvd has siblings, then half of the time, detach it. Prior
* to the detach the pool is scrubbed in order to prevent creating
* unrepairable blocks as a result of the data corruption injection.
*/
if (oldvd_has_siblings && ztest_random(2) == 0) {
spa_config_exit(spa, SCL_ALL, FTAG);
error = ztest_scrub_impl(spa);
if (error)
goto out;
error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
if (error != 0 && error != ENODEV && error != EBUSY &&
error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
error != ZFS_ERR_DISCARDING_CHECKPOINT)
fatal(0, "detach (%s) returned %d", oldpath, error);
goto out;
}
/*
* For the new vdev, choose with equal probability between the two
* standard paths (ending in either 'a' or 'b') or a random hot spare.
*/
if (sav->sav_count != 0 && ztest_random(3) == 0) {
newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
newvd_is_spare = B_TRUE;
(void) strcpy(newpath, newvd->vdev_path);
} else {
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool,
top * leaves + leaf);
if (ztest_random(2) == 0)
newpath[strlen(newpath) - 1] = 'b';
newvd = vdev_lookup_by_path(rvd, newpath);
}
if (newvd) {
/*
* Reopen to ensure the vdev's asize field isn't stale.
*/
vdev_reopen(newvd);
newsize = vdev_get_min_asize(newvd);
} else {
/*
* Make newsize a little bigger or smaller than oldsize.
* If it's smaller, the attach should fail.
* If it's larger, and we're doing a replace,
* we should get dynamic LUN growth when we're done.
*/
newsize = 10 * oldsize / (9 + ztest_random(3));
}
/*
* If pvd is not a mirror or root, the attach should fail with ENOTSUP,
* unless it's a replace; in that case any non-replacing parent is OK.
*
* If newvd is already part of the pool, it should fail with EBUSY.
*
* If newvd is too small, it should fail with EOVERFLOW.
*/
if (pvd->vdev_ops != &vdev_mirror_ops &&
pvd->vdev_ops != &vdev_root_ops && (!replacing ||
pvd->vdev_ops == &vdev_replacing_ops ||
pvd->vdev_ops == &vdev_spare_ops))
expected_error = ENOTSUP;
else if (newvd_is_spare && (!replacing || oldvd_is_log))
expected_error = ENOTSUP;
else if (newvd == oldvd)
expected_error = replacing ? 0 : EBUSY;
else if (vdev_lookup_by_path(rvd, newpath) != NULL)
expected_error = EBUSY;
else if (newsize < oldsize)
expected_error = EOVERFLOW;
else if (ashift > oldvd->vdev_top->vdev_ashift)
expected_error = EDOM;
else
expected_error = 0;
spa_config_exit(spa, SCL_ALL, FTAG);
/*
* Build the nvlist describing newpath.
*/
root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
ashift, NULL, 0, 0, 1);
/*
* When supported select either a healing or sequential resilver.
*/
boolean_t rebuilding = B_FALSE;
if (pvd->vdev_ops == &vdev_mirror_ops ||
pvd->vdev_ops == &vdev_root_ops) {
rebuilding = !!ztest_random(2);
}
error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
nvlist_free(root);
/*
* If our parent was the replacing vdev, but the replace completed,
* then instead of failing with ENOTSUP we may either succeed,
* fail with ENODEV, or fail with EOVERFLOW.
*/
if (expected_error == ENOTSUP &&
(error == 0 || error == ENODEV || error == EOVERFLOW))
expected_error = error;
/*
* If someone grew the LUN, the replacement may be too small.
*/
if (error == EOVERFLOW || error == EBUSY)
expected_error = error;
if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
error == ZFS_ERR_DISCARDING_CHECKPOINT ||
error == ZFS_ERR_RESILVER_IN_PROGRESS ||
error == ZFS_ERR_REBUILD_IN_PROGRESS)
expected_error = error;
if (error != expected_error && expected_error != EBUSY) {
fatal(0, "attach (%s %llu, %s %llu, %d) "
"returned %d, expected %d",
oldpath, oldsize, newpath,
newsize, replacing, error, expected_error);
}
out:
mutex_exit(&ztest_vdev_lock);
umem_free(oldpath, MAXPATHLEN);
umem_free(newpath, MAXPATHLEN);
}
/* ARGSUSED */
void
ztest_device_removal(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa = ztest_spa;
vdev_t *vd;
uint64_t guid;
int error;
mutex_enter(&ztest_vdev_lock);
if (ztest_device_removal_active) {
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* Remove a random top-level vdev and wait for removal to finish.
*/
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
guid = vd->vdev_guid;
spa_config_exit(spa, SCL_VDEV, FTAG);
error = spa_vdev_remove(spa, guid, B_FALSE);
if (error == 0) {
ztest_device_removal_active = B_TRUE;
mutex_exit(&ztest_vdev_lock);
/*
* spa->spa_vdev_removal is created in a sync task that
* is initiated via dsl_sync_task_nowait(). Since the
* task may not run before spa_vdev_remove() returns, we
* must wait at least 1 txg to ensure that the removal
* struct has been created.
*/
txg_wait_synced(spa_get_dsl(spa), 0);
while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
txg_wait_synced(spa_get_dsl(spa), 0);
} else {
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* The pool needs to be scrubbed after completing device removal.
* Failure to do so may result in checksum errors due to the
* strategy employed by ztest_fault_inject() when selecting which
* offset are redundant and can be damaged.
*/
error = spa_scan(spa, POOL_SCAN_SCRUB);
if (error == 0) {
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
txg_wait_synced(spa_get_dsl(spa), 0);
}
mutex_enter(&ztest_vdev_lock);
ztest_device_removal_active = B_FALSE;
mutex_exit(&ztest_vdev_lock);
}
/*
* Callback function which expands the physical size of the vdev.
*/
static vdev_t *
grow_vdev(vdev_t *vd, void *arg)
{
spa_t *spa __maybe_unused = vd->vdev_spa;
size_t *newsize = arg;
size_t fsize;
int fd;
ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
ASSERT(vd->vdev_ops->vdev_op_leaf);
if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
return (vd);
fsize = lseek(fd, 0, SEEK_END);
VERIFY(ftruncate(fd, *newsize) == 0);
if (ztest_opts.zo_verbose >= 6) {
(void) printf("%s grew from %lu to %lu bytes\n",
vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
}
(void) close(fd);
return (NULL);
}
/*
* Callback function which expands a given vdev by calling vdev_online().
*/
/* ARGSUSED */
static vdev_t *
online_vdev(vdev_t *vd, void *arg)
{
spa_t *spa = vd->vdev_spa;
vdev_t *tvd = vd->vdev_top;
uint64_t guid = vd->vdev_guid;
uint64_t generation = spa->spa_config_generation + 1;
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
int error;
ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
ASSERT(vd->vdev_ops->vdev_op_leaf);
/* Calling vdev_online will initialize the new metaslabs */
spa_config_exit(spa, SCL_STATE, spa);
error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
/*
* If vdev_online returned an error or the underlying vdev_open
* failed then we abort the expand. The only way to know that
* vdev_open fails is by checking the returned newstate.
*/
if (error || newstate != VDEV_STATE_HEALTHY) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("Unable to expand vdev, state %llu, "
"error %d\n", (u_longlong_t)newstate, error);
}
return (vd);
}
ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
/*
* Since we dropped the lock we need to ensure that we're
* still talking to the original vdev. It's possible this
* vdev may have been detached/replaced while we were
* trying to online it.
*/
if (generation != spa->spa_config_generation) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("vdev configuration has changed, "
"guid %llu, state %llu, expected gen %llu, "
"got gen %llu\n",
(u_longlong_t)guid,
(u_longlong_t)tvd->vdev_state,
(u_longlong_t)generation,
(u_longlong_t)spa->spa_config_generation);
}
return (vd);
}
return (NULL);
}
/*
* Traverse the vdev tree calling the supplied function.
* We continue to walk the tree until we either have walked all
* children or we receive a non-NULL return from the callback.
* If a NULL callback is passed, then we just return back the first
* leaf vdev we encounter.
*/
static vdev_t *
vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
{
uint_t c;
if (vd->vdev_ops->vdev_op_leaf) {
if (func == NULL)
return (vd);
else
return (func(vd, arg));
}
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
return (cvd);
}
return (NULL);
}
/*
* Verify that dynamic LUN growth works as expected.
*/
/* ARGSUSED */
void
ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa = ztest_spa;
vdev_t *vd, *tvd;
metaslab_class_t *mc;
metaslab_group_t *mg;
size_t psize, newsize;
uint64_t top;
uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
mutex_enter(&ztest_checkpoint_lock);
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
/*
* If there is a vdev removal in progress, it could complete while
* we are running, in which case we would not be able to verify
* that the metaslab_class space increased (because it decreases
* when the device removal completes).
*/
if (ztest_device_removal_active) {
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
mutex_exit(&ztest_checkpoint_lock);
return;
}
top = ztest_random_vdev_top(spa, B_TRUE);
tvd = spa->spa_root_vdev->vdev_child[top];
mg = tvd->vdev_mg;
mc = mg->mg_class;
old_ms_count = tvd->vdev_ms_count;
old_class_space = metaslab_class_get_space(mc);
/*
* Determine the size of the first leaf vdev associated with
* our top-level device.
*/
vd = vdev_walk_tree(tvd, NULL, NULL);
ASSERT3P(vd, !=, NULL);
ASSERT(vd->vdev_ops->vdev_op_leaf);
psize = vd->vdev_psize;
/*
* We only try to expand the vdev if it's healthy, less than 4x its
* original size, and it has a valid psize.
*/
if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
mutex_exit(&ztest_checkpoint_lock);
return;
}
ASSERT(psize > 0);
newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
ASSERT3U(newsize, >, psize);
if (ztest_opts.zo_verbose >= 6) {
(void) printf("Expanding LUN %s from %lu to %lu\n",
vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
}
/*
* Growing the vdev is a two step process:
* 1). expand the physical size (i.e. relabel)
* 2). online the vdev to create the new metaslabs
*/
if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
tvd->vdev_state != VDEV_STATE_HEALTHY) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("Could not expand LUN because "
"the vdev configuration changed.\n");
}
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
mutex_exit(&ztest_checkpoint_lock);
return;
}
spa_config_exit(spa, SCL_STATE, spa);
/*
* Expanding the LUN will update the config asynchronously,
* thus we must wait for the async thread to complete any
* pending tasks before proceeding.
*/
for (;;) {
boolean_t done;
mutex_enter(&spa->spa_async_lock);
done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
mutex_exit(&spa->spa_async_lock);
if (done)
break;
txg_wait_synced(spa_get_dsl(spa), 0);
(void) poll(NULL, 0, 100);
}
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
tvd = spa->spa_root_vdev->vdev_child[top];
new_ms_count = tvd->vdev_ms_count;
new_class_space = metaslab_class_get_space(mc);
if (tvd->vdev_mg != mg || mg->mg_class != mc) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("Could not verify LUN expansion due to "
"intervening vdev offline or remove.\n");
}
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
mutex_exit(&ztest_checkpoint_lock);
return;
}
/*
* Make sure we were able to grow the vdev.
*/
if (new_ms_count <= old_ms_count) {
fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
old_ms_count, new_ms_count);
}
/*
* Make sure we were able to grow the pool.
*/
if (new_class_space <= old_class_space) {
fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
old_class_space, new_class_space);
}
if (ztest_opts.zo_verbose >= 5) {
char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
(void) printf("%s grew from %s to %s\n",
spa->spa_name, oldnumbuf, newnumbuf);
}
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
mutex_exit(&ztest_checkpoint_lock);
}
/*
* Verify that dmu_objset_{create,destroy,open,close} work as expected.
*/
/* ARGSUSED */
static void
ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
{
/*
* Create the objects common to all ztest datasets.
*/
VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
}
static int
ztest_dataset_create(char *dsname)
{
int err;
uint64_t rand;
dsl_crypto_params_t *dcp = NULL;
/*
* 50% of the time, we create encrypted datasets
* using a random cipher suite and a hard-coded
* wrapping key.
*/
rand = ztest_random(2);
if (rand != 0) {
nvlist_t *crypto_args = fnvlist_alloc();
nvlist_t *props = fnvlist_alloc();
/* slight bias towards the default cipher suite */
rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
if (rand < ZIO_CRYPT_AES_128_CCM)
rand = ZIO_CRYPT_ON;
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
fnvlist_add_uint8_array(crypto_args, "wkeydata",
(uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
/*
* These parameters aren't really used by the kernel. They
* are simply stored so that userspace knows how to load
* the wrapping key.
*/
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
fnvlist_add_string(props,
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
crypto_args, &dcp));
/*
* Cycle through all available encryption implementations
* to verify interoperability.
*/
VERIFY0(gcm_impl_set("cycle"));
VERIFY0(aes_impl_set("cycle"));
fnvlist_free(crypto_args);
fnvlist_free(props);
}
err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
ztest_objset_create_cb, NULL);
dsl_crypto_params_free(dcp, !!err);
rand = ztest_random(100);
if (err || rand < 80)
return (err);
if (ztest_opts.zo_verbose >= 5)
(void) printf("Setting dataset %s to sync always\n", dsname);
return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
ZFS_SYNC_ALWAYS, B_FALSE));
}
/* ARGSUSED */
static int
ztest_objset_destroy_cb(const char *name, void *arg)
{
objset_t *os;
dmu_object_info_t doi;
int error;
/*
* Verify that the dataset contains a directory object.
*/
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
B_TRUE, FTAG, &os));
error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
if (error != ENOENT) {
/* We could have crashed in the middle of destroying it */
ASSERT0(error);
ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
}
dmu_objset_disown(os, B_TRUE, FTAG);
/*
* Destroy the dataset.
*/
if (strchr(name, '@') != NULL) {
VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
} else {
error = dsl_destroy_head(name);
if (error == ENOSPC) {
/* There could be checkpoint or insufficient slop */
ztest_record_enospc(FTAG);
} else if (error != EBUSY) {
/* There could be a hold on this dataset */
ASSERT0(error);
}
}
return (0);
}
static boolean_t
ztest_snapshot_create(char *osname, uint64_t id)
{
char snapname[ZFS_MAX_DATASET_NAME_LEN];
int error;
(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
error = dmu_objset_snapshot_one(osname, snapname);
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
return (B_FALSE);
}
if (error != 0 && error != EEXIST) {
fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
snapname, error);
}
return (B_TRUE);
}
static boolean_t
ztest_snapshot_destroy(char *osname, uint64_t id)
{
char snapname[ZFS_MAX_DATASET_NAME_LEN];
int error;
(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
(u_longlong_t)id);
error = dsl_destroy_snapshot(snapname, B_FALSE);
if (error != 0 && error != ENOENT)
fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
return (B_TRUE);
}
/* ARGSUSED */
void
ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
{
ztest_ds_t *zdtmp;
int iters;
int error;
objset_t *os, *os2;
char name[ZFS_MAX_DATASET_NAME_LEN];
zilog_t *zilog;
int i;
zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
(void) pthread_rwlock_rdlock(&ztest_name_lock);
(void) snprintf(name, sizeof (name), "%s/temp_%llu",
ztest_opts.zo_pool, (u_longlong_t)id);
/*
* If this dataset exists from a previous run, process its replay log
* half of the time. If we don't replay it, then dsl_destroy_head()
* (invoked from ztest_objset_destroy_cb()) should just throw it away.
*/
if (ztest_random(2) == 0 &&
ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
B_TRUE, FTAG, &os) == 0) {
ztest_zd_init(zdtmp, NULL, os);
zil_replay(os, zdtmp, ztest_replay_vector);
ztest_zd_fini(zdtmp);
dmu_objset_disown(os, B_TRUE, FTAG);
}
/*
* There may be an old instance of the dataset we're about to
* create lying around from a previous run. If so, destroy it
* and all of its snapshots.
*/
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
/*
* Verify that the destroyed dataset is no longer in the namespace.
*/
VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
B_TRUE, FTAG, &os));
/*
* Verify that we can create a new dataset.
*/
error = ztest_dataset_create(name);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(0, "dmu_objset_create(%s) = %d", name, error);
}
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
FTAG, &os));
ztest_zd_init(zdtmp, NULL, os);
/*
* Open the intent log for it.
*/
zilog = zil_open(os, ztest_get_data);
/*
* Put some objects in there, do a little I/O to them,
* and randomly take a couple of snapshots along the way.
*/
iters = ztest_random(5);
for (i = 0; i < iters; i++) {
ztest_dmu_object_alloc_free(zdtmp, id);
if (ztest_random(iters) == 0)
(void) ztest_snapshot_create(name, i);
}
/*
* Verify that we cannot create an existing dataset.
*/
VERIFY3U(EEXIST, ==,
dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
/*
* Verify that we can hold an objset that is also owned.
*/
VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
dmu_objset_rele(os2, FTAG);
/*
* Verify that we cannot own an objset that is already owned.
*/
VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
B_FALSE, B_TRUE, FTAG, &os2));
zil_close(zilog);
dmu_objset_disown(os, B_TRUE, FTAG);
ztest_zd_fini(zdtmp);
out:
(void) pthread_rwlock_unlock(&ztest_name_lock);
umem_free(zdtmp, sizeof (ztest_ds_t));
}
/*
* Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
*/
void
ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
{
(void) pthread_rwlock_rdlock(&ztest_name_lock);
(void) ztest_snapshot_destroy(zd->zd_name, id);
(void) ztest_snapshot_create(zd->zd_name, id);
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
/*
* Cleanup non-standard snapshots and clones.
*/
static void
ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
{
char *snap1name;
char *clone1name;
char *snap2name;
char *clone2name;
char *snap3name;
int error;
snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
"%s@s1_%llu", osname, (u_longlong_t)id);
(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
"%s/c1_%llu", osname, (u_longlong_t)id);
(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
"%s@s2_%llu", clone1name, (u_longlong_t)id);
(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
"%s/c2_%llu", osname, (u_longlong_t)id);
(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
"%s@s3_%llu", clone1name, (u_longlong_t)id);
error = dsl_destroy_head(clone2name);
if (error && error != ENOENT)
fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
error = dsl_destroy_snapshot(snap3name, B_FALSE);
if (error && error != ENOENT)
fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
error = dsl_destroy_snapshot(snap2name, B_FALSE);
if (error && error != ENOENT)
fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
error = dsl_destroy_head(clone1name);
if (error && error != ENOENT)
fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
error = dsl_destroy_snapshot(snap1name, B_FALSE);
if (error && error != ENOENT)
fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
}
/*
* Verify dsl_dataset_promote handles EBUSY
*/
void
ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
{
objset_t *os;
char *snap1name;
char *clone1name;
char *snap2name;
char *clone2name;
char *snap3name;
char *osname = zd->zd_name;
int error;
snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
(void) pthread_rwlock_rdlock(&ztest_name_lock);
ztest_dsl_dataset_cleanup(osname, id);
(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
"%s@s1_%llu", osname, (u_longlong_t)id);
(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
"%s/c1_%llu", osname, (u_longlong_t)id);
(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
"%s@s2_%llu", clone1name, (u_longlong_t)id);
(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
"%s/c2_%llu", osname, (u_longlong_t)id);
(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
"%s@s3_%llu", clone1name, (u_longlong_t)id);
error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
if (error && error != EEXIST) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
}
error = dmu_objset_clone(clone1name, snap1name);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
}
error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
if (error && error != EEXIST) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
}
error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
if (error && error != EEXIST) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
}
error = dmu_objset_clone(clone2name, snap3name);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
}
error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
FTAG, &os);
if (error)
fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
error = dsl_dataset_promote(clone2name, NULL);
if (error == ENOSPC) {
dmu_objset_disown(os, B_TRUE, FTAG);
ztest_record_enospc(FTAG);
goto out;
}
if (error != EBUSY)
fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
error);
dmu_objset_disown(os, B_TRUE, FTAG);
out:
ztest_dsl_dataset_cleanup(osname, id);
(void) pthread_rwlock_unlock(&ztest_name_lock);
umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
}
#undef OD_ARRAY_SIZE
#define OD_ARRAY_SIZE 4
/*
* Verify that dmu_object_{alloc,free} work as expected.
*/
void
ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
{
ztest_od_t *od;
int batchsize;
int size;
int b;
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
od = umem_alloc(size, UMEM_NOFAIL);
batchsize = OD_ARRAY_SIZE;
for (b = 0; b < batchsize; b++)
ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
0, 0, 0);
/*
* Destroy the previous batch of objects, create a new batch,
* and do some I/O on the new objects.
*/
if (ztest_object_init(zd, od, size, B_TRUE) != 0)
return;
while (ztest_random(4 * batchsize) != 0)
ztest_io(zd, od[ztest_random(batchsize)].od_object,
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
umem_free(od, size);
}
/*
* Rewind the global allocator to verify object allocation backfilling.
*/
void
ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
uint64_t object;
/*
* Rewind the global allocator randomly back to a lower object number
* to force backfilling and reclamation of recently freed dnodes.
*/
mutex_enter(&os->os_obj_lock);
object = ztest_random(os->os_obj_next_chunk);
os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
mutex_exit(&os->os_obj_lock);
}
#undef OD_ARRAY_SIZE
#define OD_ARRAY_SIZE 2
/*
* Verify that dmu_{read,write} work as expected.
*/
void
ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
{
int size;
ztest_od_t *od;
objset_t *os = zd->zd_os;
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
od = umem_alloc(size, UMEM_NOFAIL);
dmu_tx_t *tx;
int i, freeit, error;
uint64_t n, s, txg;
bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
uint64_t regions = 997;
uint64_t stride = 123456789ULL;
uint64_t width = 40;
int free_percent = 5;
/*
* This test uses two objects, packobj and bigobj, that are always
* updated together (i.e. in the same tx) so that their contents are
* in sync and can be compared. Their contents relate to each other
* in a simple way: packobj is a dense array of 'bufwad' structures,
* while bigobj is a sparse array of the same bufwads. Specifically,
* for any index n, there are three bufwads that should be identical:
*
* packobj, at offset n * sizeof (bufwad_t)
* bigobj, at the head of the nth chunk
* bigobj, at the tail of the nth chunk
*
* The chunk size is arbitrary. It doesn't have to be a power of two,
* and it doesn't have any relation to the object blocksize.
* The only requirement is that it can hold at least two bufwads.
*
* Normally, we write the bufwad to each of these locations.
* However, free_percent of the time we instead write zeroes to
* packobj and perform a dmu_free_range() on bigobj. By comparing
* bigobj to packobj, we can verify that the DMU is correctly
* tracking which parts of an object are allocated and free,
* and that the contents of the allocated blocks are correct.
*/
/*
* Read the directory info. If it's the first time, set things up.
*/
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
chunksize);
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
umem_free(od, size);
return;
}
bigobj = od[0].od_object;
packobj = od[1].od_object;
chunksize = od[0].od_gen;
ASSERT(chunksize == od[1].od_gen);
/*
* Prefetch a random chunk of the big object.
* Our aim here is to get some async reads in flight
* for blocks that we may free below; the DMU should
* handle this race correctly.
*/
n = ztest_random(regions) * stride + ztest_random(width);
s = 1 + ztest_random(2 * width - 1);
dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
ZIO_PRIORITY_SYNC_READ);
/*
* Pick a random index and compute the offsets into packobj and bigobj.
*/
n = ztest_random(regions) * stride + ztest_random(width);
s = 1 + ztest_random(width - 1);
packoff = n * sizeof (bufwad_t);
packsize = s * sizeof (bufwad_t);
bigoff = n * chunksize;
bigsize = s * chunksize;
packbuf = umem_alloc(packsize, UMEM_NOFAIL);
bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
/*
* free_percent of the time, free a range of bigobj rather than
* overwriting it.
*/
freeit = (ztest_random(100) < free_percent);
/*
* Read the current contents of our objects.
*/
error = dmu_read(os, packobj, packoff, packsize, packbuf,
DMU_READ_PREFETCH);
ASSERT0(error);
error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
DMU_READ_PREFETCH);
ASSERT0(error);
/*
* Get a tx for the mods to both packobj and bigobj.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, packobj, packoff, packsize);
if (freeit)
dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
else
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
/* This accounts for setting the checksum/compression. */
dmu_tx_hold_bonus(tx, bigobj);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0) {
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
umem_free(od, size);
return;
}
enum zio_checksum cksum;
do {
cksum = (enum zio_checksum)
ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
dmu_object_set_checksum(os, bigobj, cksum, tx);
enum zio_compress comp;
do {
comp = (enum zio_compress)
ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
dmu_object_set_compress(os, bigobj, comp, tx);
/*
* For each index from n to n + s, verify that the existing bufwad
* in packobj matches the bufwads at the head and tail of the
* corresponding chunk in bigobj. Then update all three bufwads
* with the new values we want to write out.
*/
for (i = 0; i < s; i++) {
/* LINTED */
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
/* LINTED */
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
/* LINTED */
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
if (pack->bw_txg > txg)
fatal(0, "future leak: got %llx, open txg is %llx",
pack->bw_txg, txg);
if (pack->bw_data != 0 && pack->bw_index != n + i)
fatal(0, "wrong index: got %llx, wanted %llx+%llx",
pack->bw_index, n, i);
if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
if (freeit) {
bzero(pack, sizeof (bufwad_t));
} else {
pack->bw_index = n + i;
pack->bw_txg = txg;
pack->bw_data = 1 + ztest_random(-2ULL);
}
*bigH = *pack;
*bigT = *pack;
}
/*
* We've verified all the old bufwads, and made new ones.
* Now write them out.
*/
dmu_write(os, packobj, packoff, packsize, packbuf, tx);
if (freeit) {
if (ztest_opts.zo_verbose >= 7) {
(void) printf("freeing offset %llx size %llx"
" txg %llx\n",
(u_longlong_t)bigoff,
(u_longlong_t)bigsize,
(u_longlong_t)txg);
}
VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
} else {
if (ztest_opts.zo_verbose >= 7) {
(void) printf("writing offset %llx size %llx"
" txg %llx\n",
(u_longlong_t)bigoff,
(u_longlong_t)bigsize,
(u_longlong_t)txg);
}
dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
}
dmu_tx_commit(tx);
/*
* Sanity check the stuff we just wrote.
*/
{
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
VERIFY(0 == dmu_read(os, packobj, packoff,
packsize, packcheck, DMU_READ_PREFETCH));
VERIFY(0 == dmu_read(os, bigobj, bigoff,
bigsize, bigcheck, DMU_READ_PREFETCH));
ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
umem_free(packcheck, packsize);
umem_free(bigcheck, bigsize);
}
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
umem_free(od, size);
}
static void
compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
{
uint64_t i;
bufwad_t *pack;
bufwad_t *bigH;
bufwad_t *bigT;
/*
* For each index from n to n + s, verify that the existing bufwad
* in packobj matches the bufwads at the head and tail of the
* corresponding chunk in bigobj. Then update all three bufwads
* with the new values we want to write out.
*/
for (i = 0; i < s; i++) {
/* LINTED */
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
/* LINTED */
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
/* LINTED */
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
if (pack->bw_txg > txg)
fatal(0, "future leak: got %llx, open txg is %llx",
pack->bw_txg, txg);
if (pack->bw_data != 0 && pack->bw_index != n + i)
fatal(0, "wrong index: got %llx, wanted %llx+%llx",
pack->bw_index, n, i);
if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
pack->bw_index = n + i;
pack->bw_txg = txg;
pack->bw_data = 1 + ztest_random(-2ULL);
*bigH = *pack;
*bigT = *pack;
}
}
#undef OD_ARRAY_SIZE
#define OD_ARRAY_SIZE 2
void
ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
dmu_tx_t *tx;
uint64_t i;
int error;
int size;
uint64_t n, s, txg;
bufwad_t *packbuf, *bigbuf;
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
uint64_t blocksize = ztest_random_blocksize();
uint64_t chunksize = blocksize;
uint64_t regions = 997;
uint64_t stride = 123456789ULL;
uint64_t width = 9;
dmu_buf_t *bonus_db;
arc_buf_t **bigbuf_arcbufs;
dmu_object_info_t doi;
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
od = umem_alloc(size, UMEM_NOFAIL);
/*
* This test uses two objects, packobj and bigobj, that are always
* updated together (i.e. in the same tx) so that their contents are
* in sync and can be compared. Their contents relate to each other
* in a simple way: packobj is a dense array of 'bufwad' structures,
* while bigobj is a sparse array of the same bufwads. Specifically,
* for any index n, there are three bufwads that should be identical:
*
* packobj, at offset n * sizeof (bufwad_t)
* bigobj, at the head of the nth chunk
* bigobj, at the tail of the nth chunk
*
* The chunk size is set equal to bigobj block size so that
* dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
*/
/*
* Read the directory info. If it's the first time, set things up.
*/
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
chunksize);
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
umem_free(od, size);
return;
}
bigobj = od[0].od_object;
packobj = od[1].od_object;
blocksize = od[0].od_blocksize;
chunksize = blocksize;
ASSERT(chunksize == od[1].od_gen);
VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
VERIFY(ISP2(doi.doi_data_block_size));
VERIFY(chunksize == doi.doi_data_block_size);
VERIFY(chunksize >= 2 * sizeof (bufwad_t));
/*
* Pick a random index and compute the offsets into packobj and bigobj.
*/
n = ztest_random(regions) * stride + ztest_random(width);
s = 1 + ztest_random(width - 1);
packoff = n * sizeof (bufwad_t);
packsize = s * sizeof (bufwad_t);
bigoff = n * chunksize;
bigsize = s * chunksize;
packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
/*
* Iteration 0 test zcopy for DB_UNCACHED dbufs.
* Iteration 1 test zcopy to already referenced dbufs.
* Iteration 2 test zcopy to dirty dbuf in the same txg.
* Iteration 3 test zcopy to dbuf dirty in previous txg.
* Iteration 4 test zcopy when dbuf is no longer dirty.
* Iteration 5 test zcopy when it can't be done.
* Iteration 6 one more zcopy write.
*/
for (i = 0; i < 7; i++) {
uint64_t j;
uint64_t off;
/*
* In iteration 5 (i == 5) use arcbufs
* that don't match bigobj blksz to test
* dmu_assign_arcbuf_by_dbuf() when it can't directly
* assign an arcbuf to a dbuf.
*/
for (j = 0; j < s; j++) {
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
bigbuf_arcbufs[j] =
dmu_request_arcbuf(bonus_db, chunksize);
} else {
bigbuf_arcbufs[2 * j] =
dmu_request_arcbuf(bonus_db, chunksize / 2);
bigbuf_arcbufs[2 * j + 1] =
dmu_request_arcbuf(bonus_db, chunksize / 2);
}
}
/*
* Get a tx for the mods to both packobj and bigobj.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, packobj, packoff, packsize);
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0) {
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
for (j = 0; j < s; j++) {
if (i != 5 ||
chunksize < (SPA_MINBLOCKSIZE * 2)) {
dmu_return_arcbuf(bigbuf_arcbufs[j]);
} else {
dmu_return_arcbuf(
bigbuf_arcbufs[2 * j]);
dmu_return_arcbuf(
bigbuf_arcbufs[2 * j + 1]);
}
}
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
umem_free(od, size);
dmu_buf_rele(bonus_db, FTAG);
return;
}
/*
* 50% of the time don't read objects in the 1st iteration to
* test dmu_assign_arcbuf_by_dbuf() for the case when there are
* no existing dbufs for the specified offsets.
*/
if (i != 0 || ztest_random(2) != 0) {
error = dmu_read(os, packobj, packoff,
packsize, packbuf, DMU_READ_PREFETCH);
ASSERT0(error);
error = dmu_read(os, bigobj, bigoff, bigsize,
bigbuf, DMU_READ_PREFETCH);
ASSERT0(error);
}
compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
n, chunksize, txg);
/*
* We've verified all the old bufwads, and made new ones.
* Now write them out.
*/
dmu_write(os, packobj, packoff, packsize, packbuf, tx);
if (ztest_opts.zo_verbose >= 7) {
(void) printf("writing offset %llx size %llx"
" txg %llx\n",
(u_longlong_t)bigoff,
(u_longlong_t)bigsize,
(u_longlong_t)txg);
}
for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
dmu_buf_t *dbt;
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
bcopy((caddr_t)bigbuf + (off - bigoff),
bigbuf_arcbufs[j]->b_data, chunksize);
} else {
bcopy((caddr_t)bigbuf + (off - bigoff),
bigbuf_arcbufs[2 * j]->b_data,
chunksize / 2);
bcopy((caddr_t)bigbuf + (off - bigoff) +
chunksize / 2,
bigbuf_arcbufs[2 * j + 1]->b_data,
chunksize / 2);
}
if (i == 1) {
VERIFY(dmu_buf_hold(os, bigobj, off,
FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
}
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
off, bigbuf_arcbufs[j], tx));
} else {
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
off, bigbuf_arcbufs[2 * j], tx));
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
off + chunksize / 2,
bigbuf_arcbufs[2 * j + 1], tx));
}
if (i == 1) {
dmu_buf_rele(dbt, FTAG);
}
}
dmu_tx_commit(tx);
/*
* Sanity check the stuff we just wrote.
*/
{
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
VERIFY(0 == dmu_read(os, packobj, packoff,
packsize, packcheck, DMU_READ_PREFETCH));
VERIFY(0 == dmu_read(os, bigobj, bigoff,
bigsize, bigcheck, DMU_READ_PREFETCH));
ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
umem_free(packcheck, packsize);
umem_free(bigcheck, bigsize);
}
if (i == 2) {
txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
} else if (i == 3) {
txg_wait_synced(dmu_objset_pool(os), 0);
}
}
dmu_buf_rele(bonus_db, FTAG);
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
umem_free(od, size);
}
/* ARGSUSED */
void
ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
{
ztest_od_t *od;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
/*
* Have multiple threads write to large offsets in an object
* to verify that parallel writes to an object -- even to the
* same blocks within the object -- doesn't cause any trouble.
*/
ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
return;
while (ztest_random(10) != 0)
ztest_io(zd, od->od_object, offset);
umem_free(od, sizeof (ztest_od_t));
}
void
ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
{
ztest_od_t *od;
uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
uint64_t count = ztest_random(20) + 1;
uint64_t blocksize = ztest_random_blocksize();
void *data;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
!ztest_random(2)) != 0) {
umem_free(od, sizeof (ztest_od_t));
return;
}
if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
umem_free(od, sizeof (ztest_od_t));
return;
}
ztest_prealloc(zd, od->od_object, offset, count * blocksize);
data = umem_zalloc(blocksize, UMEM_NOFAIL);
while (ztest_random(count) != 0) {
uint64_t randoff = offset + (ztest_random(count) * blocksize);
if (ztest_write(zd, od->od_object, randoff, blocksize,
data) != 0)
break;
while (ztest_random(4) != 0)
ztest_io(zd, od->od_object, randoff);
}
umem_free(data, blocksize);
umem_free(od, sizeof (ztest_od_t));
}
/*
* Verify that zap_{create,destroy,add,remove,update} work as expected.
*/
#define ZTEST_ZAP_MIN_INTS 1
#define ZTEST_ZAP_MAX_INTS 4
#define ZTEST_ZAP_MAX_PROPS 1000
void
ztest_zap(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
uint64_t object;
uint64_t txg, last_txg;
uint64_t value[ZTEST_ZAP_MAX_INTS];
uint64_t zl_ints, zl_intsize, prop;
int i, ints;
dmu_tx_t *tx;
char propname[100], txgname[100];
int error;
char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
!ztest_random(2)) != 0)
goto out;
object = od->od_object;
/*
* Generate a known hash collision, and verify that
* we can lookup and remove both entries.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
for (i = 0; i < 2; i++) {
value[i] = i;
VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
1, &value[i], tx));
}
for (i = 0; i < 2; i++) {
VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
sizeof (uint64_t), 1, &value[i], tx));
VERIFY3U(0, ==,
zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
ASSERT3U(zl_ints, ==, 1);
}
for (i = 0; i < 2; i++) {
VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
}
dmu_tx_commit(tx);
/*
* Generate a bunch of random entries.
*/
ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
bzero(value, sizeof (value));
last_txg = 0;
/*
* If these zap entries already exist, validate their contents.
*/
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
if (error == 0) {
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
ASSERT3U(zl_ints, ==, 1);
VERIFY(zap_lookup(os, object, txgname, zl_intsize,
zl_ints, &last_txg) == 0);
VERIFY(zap_length(os, object, propname, &zl_intsize,
&zl_ints) == 0);
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
ASSERT3U(zl_ints, ==, ints);
VERIFY(zap_lookup(os, object, propname, zl_intsize,
zl_ints, value) == 0);
for (i = 0; i < ints; i++) {
ASSERT3U(value[i], ==, last_txg + object + i);
}
} else {
ASSERT3U(error, ==, ENOENT);
}
/*
* Atomically update two entries in our zap object.
* The first is named txg_%llu, and contains the txg
* in which the property was last updated. The second
* is named prop_%llu, and the nth element of its value
* should be txg + object + n.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
if (last_txg > txg)
fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
for (i = 0; i < ints; i++)
value[i] = txg + object + i;
VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
1, &txg, tx));
VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
ints, value, tx));
dmu_tx_commit(tx);
/*
* Remove a random pair of entries.
*/
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
if (error == ENOENT)
goto out;
ASSERT0(error);
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
dmu_tx_commit(tx);
out:
umem_free(od, sizeof (ztest_od_t));
}
/*
* Test case to test the upgrading of a microzap to fatzap.
*/
void
ztest_fzap(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
uint64_t object, txg;
int i;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
!ztest_random(2)) != 0)
goto out;
object = od->od_object;
/*
* Add entries to this ZAP and make sure it spills over
* and gets upgraded to a fatzap. Also, since we are adding
* 2050 entries we should see ptrtbl growth and leaf-block split.
*/
for (i = 0; i < 2050; i++) {
char name[ZFS_MAX_DATASET_NAME_LEN];
uint64_t value = i;
dmu_tx_t *tx;
int error;
(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
(u_longlong_t)id, (u_longlong_t)value);
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, name);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
error = zap_add(os, object, name, sizeof (uint64_t), 1,
&value, tx);
ASSERT(error == 0 || error == EEXIST);
dmu_tx_commit(tx);
}
out:
umem_free(od, sizeof (ztest_od_t));
}
/* ARGSUSED */
void
ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
dmu_tx_t *tx;
int i, namelen, error;
int micro = ztest_random(2);
char name[20], string_value[20];
void *data;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
umem_free(od, sizeof (ztest_od_t));
return;
}
object = od->od_object;
/*
* Generate a random name of the form 'xxx.....' where each
* x is a random printable character and the dots are dots.
* There are 94 such characters, and the name length goes from
* 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
*/
namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
for (i = 0; i < 3; i++)
name[i] = '!' + ztest_random('~' - '!' + 1);
for (; i < namelen - 1; i++)
name[i] = '.';
name[i] = '\0';
if ((namelen & 1) || micro) {
wsize = sizeof (txg);
wc = 1;
data = &txg;
} else {
wsize = 1;
wc = namelen;
data = string_value;
}
count = -1ULL;
VERIFY0(zap_count(os, object, &count));
ASSERT(count != -1ULL);
/*
* Select an operation: length, lookup, add, update, remove.
*/
i = ztest_random(5);
if (i >= 2) {
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0) {
umem_free(od, sizeof (ztest_od_t));
return;
}
bcopy(name, string_value, namelen);
} else {
tx = NULL;
txg = 0;
bzero(string_value, namelen);
}
switch (i) {
case 0:
error = zap_length(os, object, name, &zl_wsize, &zl_wc);
if (error == 0) {
ASSERT3U(wsize, ==, zl_wsize);
ASSERT3U(wc, ==, zl_wc);
} else {
ASSERT3U(error, ==, ENOENT);
}
break;
case 1:
error = zap_lookup(os, object, name, wsize, wc, data);
if (error == 0) {
if (data == string_value &&
bcmp(name, data, namelen) != 0)
fatal(0, "name '%s' != val '%s' len %d",
name, data, namelen);
} else {
ASSERT3U(error, ==, ENOENT);
}
break;
case 2:
error = zap_add(os, object, name, wsize, wc, data, tx);
ASSERT(error == 0 || error == EEXIST);
break;
case 3:
VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
break;
case 4:
error = zap_remove(os, object, name, tx);
ASSERT(error == 0 || error == ENOENT);
break;
}
if (tx != NULL)
dmu_tx_commit(tx);
umem_free(od, sizeof (ztest_od_t));
}
/*
* Commit callback data.
*/
typedef struct ztest_cb_data {
list_node_t zcd_node;
uint64_t zcd_txg;
int zcd_expected_err;
boolean_t zcd_added;
boolean_t zcd_called;
spa_t *zcd_spa;
} ztest_cb_data_t;
/* This is the actual commit callback function */
static void
ztest_commit_callback(void *arg, int error)
{
ztest_cb_data_t *data = arg;
uint64_t synced_txg;
VERIFY(data != NULL);
VERIFY3S(data->zcd_expected_err, ==, error);
VERIFY(!data->zcd_called);
synced_txg = spa_last_synced_txg(data->zcd_spa);
if (data->zcd_txg > synced_txg)
fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
", last synced txg = %" PRIu64 "\n", data->zcd_txg,
synced_txg);
data->zcd_called = B_TRUE;
if (error == ECANCELED) {
ASSERT0(data->zcd_txg);
ASSERT(!data->zcd_added);
/*
* The private callback data should be destroyed here, but
* since we are going to check the zcd_called field after
* dmu_tx_abort(), we will destroy it there.
*/
return;
}
ASSERT(data->zcd_added);
ASSERT3U(data->zcd_txg, !=, 0);
(void) mutex_enter(&zcl.zcl_callbacks_lock);
/* See if this cb was called more quickly */
if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
zc_min_txg_delay = synced_txg - data->zcd_txg;
/* Remove our callback from the list */
list_remove(&zcl.zcl_callbacks, data);
(void) mutex_exit(&zcl.zcl_callbacks_lock);
umem_free(data, sizeof (ztest_cb_data_t));
}
/* Allocate and initialize callback data structure */
static ztest_cb_data_t *
ztest_create_cb_data(objset_t *os, uint64_t txg)
{
ztest_cb_data_t *cb_data;
cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
cb_data->zcd_txg = txg;
cb_data->zcd_spa = dmu_objset_spa(os);
list_link_init(&cb_data->zcd_node);
return (cb_data);
}
/*
* Commit callback test.
*/
void
ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
dmu_tx_t *tx;
ztest_cb_data_t *cb_data[3], *tmp_cb;
uint64_t old_txg, txg;
int i, error = 0;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
umem_free(od, sizeof (ztest_od_t));
return;
}
tx = dmu_tx_create(os);
cb_data[0] = ztest_create_cb_data(os, 0);
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
/* Every once in a while, abort the transaction on purpose */
if (ztest_random(100) == 0)
error = -1;
if (!error)
error = dmu_tx_assign(tx, TXG_NOWAIT);
txg = error ? 0 : dmu_tx_get_txg(tx);
cb_data[0]->zcd_txg = txg;
cb_data[1] = ztest_create_cb_data(os, txg);
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
if (error) {
/*
* It's not a strict requirement to call the registered
* callbacks from inside dmu_tx_abort(), but that's what
* it's supposed to happen in the current implementation
* so we will check for that.
*/
for (i = 0; i < 2; i++) {
cb_data[i]->zcd_expected_err = ECANCELED;
VERIFY(!cb_data[i]->zcd_called);
}
dmu_tx_abort(tx);
for (i = 0; i < 2; i++) {
VERIFY(cb_data[i]->zcd_called);
umem_free(cb_data[i], sizeof (ztest_cb_data_t));
}
umem_free(od, sizeof (ztest_od_t));
return;
}
cb_data[2] = ztest_create_cb_data(os, txg);
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
/*
* Read existing data to make sure there isn't a future leak.
*/
VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
&old_txg, DMU_READ_PREFETCH));
if (old_txg > txg)
fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
old_txg, txg);
dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
(void) mutex_enter(&zcl.zcl_callbacks_lock);
/*
* Since commit callbacks don't have any ordering requirement and since
* it is theoretically possible for a commit callback to be called
* after an arbitrary amount of time has elapsed since its txg has been
* synced, it is difficult to reliably determine whether a commit
* callback hasn't been called due to high load or due to a flawed
* implementation.
*
* In practice, we will assume that if after a certain number of txgs a
* commit callback hasn't been called, then most likely there's an
* implementation bug..
*/
tmp_cb = list_head(&zcl.zcl_callbacks);
if (tmp_cb != NULL &&
tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
fatal(0, "Commit callback threshold exceeded, oldest txg: %"
PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
}
/*
* Let's find the place to insert our callbacks.
*
* Even though the list is ordered by txg, it is possible for the
* insertion point to not be the end because our txg may already be
* quiescing at this point and other callbacks in the open txg
* (from other objsets) may have sneaked in.
*/
tmp_cb = list_tail(&zcl.zcl_callbacks);
while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
/* Add the 3 callbacks to the list */
for (i = 0; i < 3; i++) {
if (tmp_cb == NULL)
list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
else
list_insert_after(&zcl.zcl_callbacks, tmp_cb,
cb_data[i]);
cb_data[i]->zcd_added = B_TRUE;
VERIFY(!cb_data[i]->zcd_called);
tmp_cb = cb_data[i];
}
zc_cb_counter += 3;
(void) mutex_exit(&zcl.zcl_callbacks_lock);
dmu_tx_commit(tx);
umem_free(od, sizeof (ztest_od_t));
}
/*
* Visit each object in the dataset. Verify that its properties
* are consistent what was stored in the block tag when it was created,
* and that its unused bonus buffer space has not been overwritten.
*/
/* ARGSUSED */
void
ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
uint64_t obj;
int err = 0;
for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
ztest_block_tag_t *bt = NULL;
dmu_object_info_t doi;
dmu_buf_t *db;
ztest_object_lock(zd, obj, RL_READER);
if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
ztest_object_unlock(zd, obj);
continue;
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_size >= sizeof (*bt))
bt = ztest_bt_bonus(db);
if (bt && bt->bt_magic == BT_MAGIC) {
ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
bt->bt_offset, bt->bt_gen, bt->bt_txg,
bt->bt_crtxg);
ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
}
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, obj);
}
}
/* ARGSUSED */
void
ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
{
zfs_prop_t proplist[] = {
ZFS_PROP_CHECKSUM,
ZFS_PROP_COMPRESSION,
ZFS_PROP_COPIES,
ZFS_PROP_DEDUP
};
int p;
(void) pthread_rwlock_rdlock(&ztest_name_lock);
for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
ztest_random_blocksize(), (int)ztest_random(2)));
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
/* ARGSUSED */
void
ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
{
nvlist_t *props = NULL;
(void) pthread_rwlock_rdlock(&ztest_name_lock);
(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
VERIFY0(spa_prop_get(ztest_spa, &props));
if (ztest_opts.zo_verbose >= 6)
dump_nvlist(props, 4);
nvlist_free(props);
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
static int
user_release_one(const char *snapname, const char *holdname)
{
nvlist_t *snaps, *holds;
int error;
snaps = fnvlist_alloc();
holds = fnvlist_alloc();
fnvlist_add_boolean(holds, holdname);
fnvlist_add_nvlist(snaps, snapname, holds);
fnvlist_free(holds);
error = dsl_dataset_user_release(snaps, NULL);
fnvlist_free(snaps);
return (error);
}
/*
* Test snapshot hold/release and deferred destroy.
*/
void
ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
{
int error;
objset_t *os = zd->zd_os;
objset_t *origin;
char snapname[100];
char fullname[100];
char clonename[100];
char tag[100];
char osname[ZFS_MAX_DATASET_NAME_LEN];
nvlist_t *holds;
(void) pthread_rwlock_rdlock(&ztest_name_lock);
dmu_objset_name(os, osname);
(void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
(u_longlong_t)id);
(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
(void) snprintf(clonename, sizeof (clonename),
"%s/ch1_%llu", osname, (u_longlong_t)id);
(void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
/*
* Clean up from any previous run.
*/
error = dsl_destroy_head(clonename);
if (error != ENOENT)
ASSERT0(error);
error = user_release_one(fullname, tag);
if (error != ESRCH && error != ENOENT)
ASSERT0(error);
error = dsl_destroy_snapshot(fullname, B_FALSE);
if (error != ENOENT)
ASSERT0(error);
/*
* Create snapshot, clone it, mark snap for deferred destroy,
* destroy clone, verify snap was also destroyed.
*/
error = dmu_objset_snapshot_one(osname, snapname);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc("dmu_objset_snapshot");
goto out;
}
fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
}
error = dmu_objset_clone(clonename, fullname);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc("dmu_objset_clone");
goto out;
}
fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
}
error = dsl_destroy_snapshot(fullname, B_TRUE);
if (error) {
fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
fullname, error);
}
error = dsl_destroy_head(clonename);
if (error)
fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
error = dmu_objset_hold(fullname, FTAG, &origin);
if (error != ENOENT)
fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
/*
* Create snapshot, add temporary hold, verify that we can't
* destroy a held snapshot, mark for deferred destroy,
* release hold, verify snapshot was destroyed.
*/
error = dmu_objset_snapshot_one(osname, snapname);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc("dmu_objset_snapshot");
goto out;
}
fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
}
holds = fnvlist_alloc();
fnvlist_add_string(holds, fullname, tag);
error = dsl_dataset_user_hold(holds, 0, NULL);
fnvlist_free(holds);
if (error == ENOSPC) {
ztest_record_enospc("dsl_dataset_user_hold");
goto out;
} else if (error) {
fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
fullname, tag, error);
}
error = dsl_destroy_snapshot(fullname, B_FALSE);
if (error != EBUSY) {
fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
fullname, error);
}
error = dsl_destroy_snapshot(fullname, B_TRUE);
if (error) {
fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
fullname, error);
}
error = user_release_one(fullname, tag);
if (error)
fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
out:
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
/*
* Inject random faults into the on-disk data.
*/
/* ARGSUSED */
void
ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
{
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
int fd;
uint64_t offset;
uint64_t leaves;
uint64_t bad = 0x1990c0ffeedecadeull;
uint64_t top, leaf;
char *path0;
char *pathrand;
size_t fsize;
int bshift = SPA_MAXBLOCKSHIFT + 2;
int iters = 1000;
int maxfaults;
int mirror_save;
vdev_t *vd0 = NULL;
uint64_t guid0 = 0;
boolean_t islog = B_FALSE;
path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
mutex_enter(&ztest_vdev_lock);
/*
* Device removal is in progress, fault injection must be disabled
* until it completes and the pool is scrubbed. The fault injection
* strategy for damaging blocks does not take in to account evacuated
* blocks which may have already been damaged.
*/
if (ztest_device_removal_active) {
mutex_exit(&ztest_vdev_lock);
goto out;
}
maxfaults = MAXFAULTS(zs);
leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
mirror_save = zs->zs_mirrors;
mutex_exit(&ztest_vdev_lock);
ASSERT(leaves >= 1);
/*
* While ztest is running the number of leaves will not change. This
* is critical for the fault injection logic as it determines where
* errors can be safely injected such that they are always repairable.
*
* When restarting ztest a different number of leaves may be requested
* which will shift the regions to be damaged. This is fine as long
* as the pool has been scrubbed prior to using the new mapping.
* Failure to do can result in non-repairable damage being injected.
*/
if (ztest_pool_scrubbed == B_FALSE)
goto out;
/*
* Grab the name lock as reader. There are some operations
* which don't like to have their vdevs changed while
* they are in progress (i.e. spa_change_guid). Those
* operations will have grabbed the name lock as writer.
*/
(void) pthread_rwlock_rdlock(&ztest_name_lock);
/*
* We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
*/
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
if (ztest_random(2) == 0) {
/*
* Inject errors on a normal data device or slog device.
*/
top = ztest_random_vdev_top(spa, B_TRUE);
leaf = ztest_random(leaves) + zs->zs_splits;
/*
* Generate paths to the first leaf in this top-level vdev,
* and to the random leaf we selected. We'll induce transient
* write failures and random online/offline activity on leaf 0,
* and we'll write random garbage to the randomly chosen leaf.
*/
(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool,
top * leaves + zs->zs_splits);
(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool,
top * leaves + leaf);
vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
if (vd0 != NULL && vd0->vdev_top->vdev_islog)
islog = B_TRUE;
/*
* If the top-level vdev needs to be resilvered
* then we only allow faults on the device that is
* resilvering.
*/
if (vd0 != NULL && maxfaults != 1 &&
(!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
vd0->vdev_resilver_txg != 0)) {
/*
* Make vd0 explicitly claim to be unreadable,
* or unwriteable, or reach behind its back
* and close the underlying fd. We can do this if
* maxfaults == 0 because we'll fail and reexecute,
* and we can do it if maxfaults >= 2 because we'll
* have enough redundancy. If maxfaults == 1, the
* combination of this with injection of random data
* corruption below exceeds the pool's fault tolerance.
*/
vdev_file_t *vf = vd0->vdev_tsd;
zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
(long long)vd0->vdev_id, (int)maxfaults);
if (vf != NULL && ztest_random(3) == 0) {
(void) close(vf->vf_file->f_fd);
vf->vf_file->f_fd = -1;
} else if (ztest_random(2) == 0) {
vd0->vdev_cant_read = B_TRUE;
} else {
vd0->vdev_cant_write = B_TRUE;
}
guid0 = vd0->vdev_guid;
}
} else {
/*
* Inject errors on an l2cache device.
*/
spa_aux_vdev_t *sav = &spa->spa_l2cache;
if (sav->sav_count == 0) {
spa_config_exit(spa, SCL_STATE, FTAG);
(void) pthread_rwlock_unlock(&ztest_name_lock);
goto out;
}
vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
guid0 = vd0->vdev_guid;
(void) strcpy(path0, vd0->vdev_path);
(void) strcpy(pathrand, vd0->vdev_path);
leaf = 0;
leaves = 1;
maxfaults = INT_MAX; /* no limit on cache devices */
}
spa_config_exit(spa, SCL_STATE, FTAG);
(void) pthread_rwlock_unlock(&ztest_name_lock);
/*
* If we can tolerate two or more faults, or we're dealing
* with a slog, randomly online/offline vd0.
*/
if ((maxfaults >= 2 || islog) && guid0 != 0) {
if (ztest_random(10) < 6) {
int flags = (ztest_random(2) == 0 ?
ZFS_OFFLINE_TEMPORARY : 0);
/*
* We have to grab the zs_name_lock as writer to
* prevent a race between offlining a slog and
* destroying a dataset. Offlining the slog will
* grab a reference on the dataset which may cause
* dsl_destroy_head() to fail with EBUSY thus
* leaving the dataset in an inconsistent state.
*/
if (islog)
(void) pthread_rwlock_wrlock(&ztest_name_lock);
VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
if (islog)
(void) pthread_rwlock_unlock(&ztest_name_lock);
} else {
/*
* Ideally we would like to be able to randomly
* call vdev_[on|off]line without holding locks
* to force unpredictable failures but the side
* effects of vdev_[on|off]line prevent us from
* doing so. We grab the ztest_vdev_lock here to
* prevent a race between injection testing and
* aux_vdev removal.
*/
mutex_enter(&ztest_vdev_lock);
(void) vdev_online(spa, guid0, 0, NULL);
mutex_exit(&ztest_vdev_lock);
}
}
if (maxfaults == 0)
goto out;
/*
* We have at least single-fault tolerance, so inject data corruption.
*/
fd = open(pathrand, O_RDWR);
if (fd == -1) /* we hit a gap in the device namespace */
goto out;
fsize = lseek(fd, 0, SEEK_END);
while (--iters != 0) {
/*
* The offset must be chosen carefully to ensure that
* we do not inject a given logical block with errors
* on two different leaf devices, because ZFS can not
* tolerate that (if maxfaults==1).
*
* To achieve this we divide each leaf device into
* chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
* Each chunk is further divided into error-injection
* ranges (can accept errors) and clear ranges (we do
* not inject errors in those). Each error-injection
* range can accept errors only for a single leaf vdev.
* Error-injection ranges are separated by clear ranges.
*
* For example, with 3 leaves, each chunk looks like:
* 0 to 32M: injection range for leaf 0
* 32M to 64M: clear range - no injection allowed
* 64M to 96M: injection range for leaf 1
* 96M to 128M: clear range - no injection allowed
* 128M to 160M: injection range for leaf 2
* 160M to 192M: clear range - no injection allowed
*
* Each clear range must be large enough such that a
* single block cannot straddle it. This way a block
* can't be a target in two different injection ranges
* (on different leaf vdevs).
*/
offset = ztest_random(fsize / (leaves << bshift)) *
(leaves << bshift) + (leaf << bshift) +
(ztest_random(1ULL << (bshift - 1)) & -8ULL);
/*
* Only allow damage to the labels at one end of the vdev.
*
* If all labels are damaged, the device will be totally
* inaccessible, which will result in loss of data,
* because we also damage (parts of) the other side of
* the mirror/raidz.
*
* Additionally, we will always have both an even and an
* odd label, so that we can handle crashes in the
* middle of vdev_config_sync().
*/
if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
continue;
/*
* The two end labels are stored at the "end" of the disk, but
* the end of the disk (vdev_psize) is aligned to
* sizeof (vdev_label_t).
*/
uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
if ((leaf & 1) == 1 &&
offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
continue;
mutex_enter(&ztest_vdev_lock);
if (mirror_save != zs->zs_mirrors) {
mutex_exit(&ztest_vdev_lock);
(void) close(fd);
goto out;
}
if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
fatal(1, "can't inject bad word at 0x%llx in %s",
offset, pathrand);
mutex_exit(&ztest_vdev_lock);
if (ztest_opts.zo_verbose >= 7)
(void) printf("injected bad word into %s,"
" offset 0x%llx\n", pathrand, (u_longlong_t)offset);
}
(void) close(fd);
out:
umem_free(path0, MAXPATHLEN);
umem_free(pathrand, MAXPATHLEN);
}
/*
* By design ztest will never inject uncorrectable damage in to the pool.
* Issue a scrub, wait for it to complete, and verify there is never any
* any persistent damage.
*
* Only after a full scrub has been completed is it safe to start injecting
* data corruption. See the comment in zfs_fault_inject().
*/
static int
ztest_scrub_impl(spa_t *spa)
{
int error = spa_scan(spa, POOL_SCAN_SCRUB);
if (error)
return (error);
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
txg_wait_synced(spa_get_dsl(spa), 0);
if (spa_get_errlog_size(spa) > 0)
return (ECKSUM);
ztest_pool_scrubbed = B_TRUE;
return (0);
}
/*
* Scrub the pool.
*/
/* ARGSUSED */
void
ztest_scrub(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa = ztest_spa;
int error;
/*
* Scrub in progress by device removal.
*/
if (ztest_device_removal_active)
return;
/*
* Start a scrub, wait a moment, then force a restart.
*/
(void) spa_scan(spa, POOL_SCAN_SCRUB);
(void) poll(NULL, 0, 100);
error = ztest_scrub_impl(spa);
if (error == EBUSY)
error = 0;
ASSERT0(error);
}
/*
* Change the guid for the pool.
*/
/* ARGSUSED */
void
ztest_reguid(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa = ztest_spa;
uint64_t orig, load;
int error;
if (ztest_opts.zo_mmp_test)
return;
orig = spa_guid(spa);
load = spa_load_guid(spa);
(void) pthread_rwlock_wrlock(&ztest_name_lock);
error = spa_change_guid(spa);
(void) pthread_rwlock_unlock(&ztest_name_lock);
if (error != 0)
return;
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Changed guid old %llu -> %llu\n",
(u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
}
VERIFY3U(orig, !=, spa_guid(spa));
VERIFY3U(load, ==, spa_load_guid(spa));
}
void
ztest_fletcher(ztest_ds_t *zd, uint64_t id)
{
hrtime_t end = gethrtime() + NANOSEC;
while (gethrtime() <= end) {
int run_count = 100;
void *buf;
struct abd *abd_data, *abd_meta;
uint32_t size;
int *ptr;
int i;
zio_cksum_t zc_ref;
zio_cksum_t zc_ref_byteswap;
size = ztest_random_blocksize();
buf = umem_alloc(size, UMEM_NOFAIL);
abd_data = abd_alloc(size, B_FALSE);
abd_meta = abd_alloc(size, B_TRUE);
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
*ptr = ztest_random(UINT_MAX);
abd_copy_from_buf_off(abd_data, buf, 0, size);
abd_copy_from_buf_off(abd_meta, buf, 0, size);
VERIFY0(fletcher_4_impl_set("scalar"));
fletcher_4_native(buf, size, NULL, &zc_ref);
fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
VERIFY0(fletcher_4_impl_set("cycle"));
while (run_count-- > 0) {
zio_cksum_t zc;
zio_cksum_t zc_byteswap;
fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
fletcher_4_native(buf, size, NULL, &zc);
VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
sizeof (zc_byteswap)));
/* Test ABD - data */
abd_fletcher_4_byteswap(abd_data, size, NULL,
&zc_byteswap);
abd_fletcher_4_native(abd_data, size, NULL, &zc);
VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
sizeof (zc_byteswap)));
/* Test ABD - metadata */
abd_fletcher_4_byteswap(abd_meta, size, NULL,
&zc_byteswap);
abd_fletcher_4_native(abd_meta, size, NULL, &zc);
VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
sizeof (zc_byteswap)));
}
umem_free(buf, size);
abd_free(abd_data);
abd_free(abd_meta);
}
}
void
ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
{
void *buf;
size_t size;
int *ptr;
int i;
zio_cksum_t zc_ref;
zio_cksum_t zc_ref_bswap;
hrtime_t end = gethrtime() + NANOSEC;
while (gethrtime() <= end) {
int run_count = 100;
size = ztest_random_blocksize();
buf = umem_alloc(size, UMEM_NOFAIL);
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
*ptr = ztest_random(UINT_MAX);
VERIFY0(fletcher_4_impl_set("scalar"));
fletcher_4_native(buf, size, NULL, &zc_ref);
fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
VERIFY0(fletcher_4_impl_set("cycle"));
while (run_count-- > 0) {
zio_cksum_t zc;
zio_cksum_t zc_bswap;
size_t pos = 0;
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
while (pos < size) {
size_t inc = 64 * ztest_random(size / 67);
/* sometimes add few bytes to test non-simd */
if (ztest_random(100) < 10)
inc += P2ALIGN(ztest_random(64),
sizeof (uint32_t));
if (inc > (size - pos))
inc = size - pos;
fletcher_4_incremental_native(buf + pos, inc,
&zc);
fletcher_4_incremental_byteswap(buf + pos, inc,
&zc_bswap);
pos += inc;
}
VERIFY3U(pos, ==, size);
VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
/*
* verify if incremental on the whole buffer is
* equivalent to non-incremental version
*/
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
fletcher_4_incremental_native(buf, size, &zc);
fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
}
umem_free(buf, size);
}
}
static int
ztest_check_path(char *path)
{
struct stat s;
/* return true on success */
return (!stat(path, &s));
}
static void
ztest_get_zdb_bin(char *bin, int len)
{
char *zdb_path;
/*
* Try to use ZDB_PATH and in-tree zdb path. If not successful, just
* let popen to search through PATH.
*/
if ((zdb_path = getenv("ZDB_PATH"))) {
strlcpy(bin, zdb_path, len); /* In env */
if (!ztest_check_path(bin)) {
ztest_dump_core = 0;
fatal(1, "invalid ZDB_PATH '%s'", bin);
}
return;
}
VERIFY(realpath(getexecname(), bin) != NULL);
if (strstr(bin, "/ztest/")) {
strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
strcat(bin, "/zdb/zdb");
if (ztest_check_path(bin))
return;
}
strcpy(bin, "zdb");
}
static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t *vd)
{
if (vd == NULL)
return (NULL);
if (vd->vdev_children == 0)
return (vd);
vdev_t *eligible[vd->vdev_children];
int eligible_idx = 0, i;
for (i = 0; i < vd->vdev_children; i++) {
vdev_t *cvd = vd->vdev_child[i];
if (cvd->vdev_top->vdev_removing)
continue;
if (cvd->vdev_children > 0 ||
(vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
eligible[eligible_idx++] = cvd;
}
}
VERIFY(eligible_idx > 0);
uint64_t child_no = ztest_random(eligible_idx);
return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
}
/* ARGSUSED */
void
ztest_initialize(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa = ztest_spa;
int error = 0;
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
/* Random leaf vdev */
vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
if (rand_vd == NULL) {
spa_config_exit(spa, SCL_VDEV, FTAG);
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* The random vdev we've selected may change as soon as we
* drop the spa_config_lock. We create local copies of things
* we're interested in.
*/
uint64_t guid = rand_vd->vdev_guid;
char *path = strdup(rand_vd->vdev_path);
boolean_t active = rand_vd->vdev_initialize_thread != NULL;
zfs_dbgmsg("vd %px, guid %llu", rand_vd, guid);
spa_config_exit(spa, SCL_VDEV, FTAG);
uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
nvlist_t *vdev_guids = fnvlist_alloc();
nvlist_t *vdev_errlist = fnvlist_alloc();
fnvlist_add_uint64(vdev_guids, path, guid);
error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
fnvlist_free(vdev_guids);
fnvlist_free(vdev_errlist);
switch (cmd) {
case POOL_INITIALIZE_CANCEL:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Cancel initialize %s", path);
if (!active)
(void) printf(" failed (no initialize active)");
(void) printf("\n");
}
break;
case POOL_INITIALIZE_START:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Start initialize %s", path);
if (active && error == 0)
(void) printf(" failed (already active)");
else if (error != 0)
(void) printf(" failed (error %d)", error);
(void) printf("\n");
}
break;
case POOL_INITIALIZE_SUSPEND:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Suspend initialize %s", path);
if (!active)
(void) printf(" failed (no initialize active)");
(void) printf("\n");
}
break;
}
free(path);
mutex_exit(&ztest_vdev_lock);
}
/* ARGSUSED */
void
ztest_trim(ztest_ds_t *zd, uint64_t id)
{
spa_t *spa = ztest_spa;
int error = 0;
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
/* Random leaf vdev */
vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
if (rand_vd == NULL) {
spa_config_exit(spa, SCL_VDEV, FTAG);
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* The random vdev we've selected may change as soon as we
* drop the spa_config_lock. We create local copies of things
* we're interested in.
*/
uint64_t guid = rand_vd->vdev_guid;
char *path = strdup(rand_vd->vdev_path);
boolean_t active = rand_vd->vdev_trim_thread != NULL;
zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
spa_config_exit(spa, SCL_VDEV, FTAG);
uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
uint64_t rate = 1 << ztest_random(30);
boolean_t partial = (ztest_random(5) > 0);
boolean_t secure = (ztest_random(5) > 0);
nvlist_t *vdev_guids = fnvlist_alloc();
nvlist_t *vdev_errlist = fnvlist_alloc();
fnvlist_add_uint64(vdev_guids, path, guid);
error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
secure, vdev_errlist);
fnvlist_free(vdev_guids);
fnvlist_free(vdev_errlist);
switch (cmd) {
case POOL_TRIM_CANCEL:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Cancel TRIM %s", path);
if (!active)
(void) printf(" failed (no TRIM active)");
(void) printf("\n");
}
break;
case POOL_TRIM_START:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Start TRIM %s", path);
if (active && error == 0)
(void) printf(" failed (already active)");
else if (error != 0)
(void) printf(" failed (error %d)", error);
(void) printf("\n");
}
break;
case POOL_TRIM_SUSPEND:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Suspend TRIM %s", path);
if (!active)
(void) printf(" failed (no TRIM active)");
(void) printf("\n");
}
break;
}
free(path);
mutex_exit(&ztest_vdev_lock);
}
/*
* Verify pool integrity by running zdb.
*/
static void
ztest_run_zdb(char *pool)
{
int status;
char *bin;
char *zdb;
char *zbuf;
const int len = MAXPATHLEN + MAXNAMELEN + 20;
FILE *fp;
bin = umem_alloc(len, UMEM_NOFAIL);
zdb = umem_alloc(len, UMEM_NOFAIL);
zbuf = umem_alloc(1024, UMEM_NOFAIL);
ztest_get_zdb_bin(bin, len);
(void) sprintf(zdb,
"%s -bcc%s%s -G -d -Y -e -y -p %s %s",
bin,
ztest_opts.zo_verbose >= 3 ? "s" : "",
ztest_opts.zo_verbose >= 4 ? "v" : "",
ztest_opts.zo_dir,
pool);
if (ztest_opts.zo_verbose >= 5)
(void) printf("Executing %s\n", strstr(zdb, "zdb "));
fp = popen(zdb, "r");
while (fgets(zbuf, 1024, fp) != NULL)
if (ztest_opts.zo_verbose >= 3)
(void) printf("%s", zbuf);
status = pclose(fp);
if (status == 0)
goto out;
ztest_dump_core = 0;
if (WIFEXITED(status))
fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
else
fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
out:
umem_free(bin, len);
umem_free(zdb, len);
umem_free(zbuf, 1024);
}
static void
ztest_walk_pool_directory(char *header)
{
spa_t *spa = NULL;
if (ztest_opts.zo_verbose >= 6)
(void) printf("%s\n", header);
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(spa)) != NULL)
if (ztest_opts.zo_verbose >= 6)
(void) printf("\t%s\n", spa_name(spa));
mutex_exit(&spa_namespace_lock);
}
static void
ztest_spa_import_export(char *oldname, char *newname)
{
nvlist_t *config, *newconfig;
uint64_t pool_guid;
spa_t *spa;
int error;
if (ztest_opts.zo_verbose >= 4) {
(void) printf("import/export: old = %s, new = %s\n",
oldname, newname);
}
/*
* Clean up from previous runs.
*/
(void) spa_destroy(newname);
/*
* Get the pool's configuration and guid.
*/
VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
/*
* Kick off a scrub to tickle scrub/export races.
*/
if (ztest_random(2) == 0)
(void) spa_scan(spa, POOL_SCAN_SCRUB);
pool_guid = spa_guid(spa);
spa_close(spa, FTAG);
ztest_walk_pool_directory("pools before export");
/*
* Export it.
*/
VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
ztest_walk_pool_directory("pools after export");
/*
* Try to import it.
*/
newconfig = spa_tryimport(config);
ASSERT(newconfig != NULL);
nvlist_free(newconfig);
/*
* Import it under the new name.
*/
error = spa_import(newname, config, NULL, 0);
if (error != 0) {
dump_nvlist(config, 0);
fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
oldname, newname, error);
}
ztest_walk_pool_directory("pools after import");
/*
* Try to import it again -- should fail with EEXIST.
*/
VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
/*
* Try to import it under a different name -- should fail with EEXIST.
*/
VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
/*
* Verify that the pool is no longer visible under the old name.
*/
VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
/*
* Verify that we can open and close the pool using the new name.
*/
VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
ASSERT(pool_guid == spa_guid(spa));
spa_close(spa, FTAG);
nvlist_free(config);
}
static void
ztest_resume(spa_t *spa)
{
if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
(void) printf("resuming from suspended state\n");
spa_vdev_state_enter(spa, SCL_NONE);
vdev_clear(spa, NULL);
(void) spa_vdev_state_exit(spa, NULL, 0);
(void) zio_resume(spa);
}
static void
ztest_resume_thread(void *arg)
{
spa_t *spa = arg;
while (!ztest_exiting) {
if (spa_suspended(spa))
ztest_resume(spa);
(void) poll(NULL, 0, 100);
/*
* Periodically change the zfs_compressed_arc_enabled setting.
*/
if (ztest_random(10) == 0)
zfs_compressed_arc_enabled = ztest_random(2);
/*
* Periodically change the zfs_abd_scatter_enabled setting.
*/
if (ztest_random(10) == 0)
zfs_abd_scatter_enabled = ztest_random(2);
}
thread_exit();
}
static void
ztest_deadman_thread(void *arg)
{
ztest_shared_t *zs = arg;
spa_t *spa = ztest_spa;
hrtime_t delay, overdue, last_run = gethrtime();
delay = (zs->zs_thread_stop - zs->zs_thread_start) +
MSEC2NSEC(zfs_deadman_synctime_ms);
while (!ztest_exiting) {
/*
* Wait for the delay timer while checking occasionally
* if we should stop.
*/
if (gethrtime() < last_run + delay) {
(void) poll(NULL, 0, 1000);
continue;
}
/*
* If the pool is suspended then fail immediately. Otherwise,
* check to see if the pool is making any progress. If
* vdev_deadman() discovers that there hasn't been any recent
* I/Os then it will end up aborting the tests.
*/
if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
fatal(0, "aborting test after %llu seconds because "
"pool has transitioned to a suspended state.",
zfs_deadman_synctime_ms / 1000);
}
vdev_deadman(spa->spa_root_vdev, FTAG);
/*
* If the process doesn't complete within a grace period of
* zfs_deadman_synctime_ms over the expected finish time,
* then it may be hung and is terminated.
*/
overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
if (gethrtime() > overdue) {
fatal(0, "aborting test after %llu seconds because "
"the process is overdue for termination.",
(gethrtime() - zs->zs_proc_start) / NANOSEC);
}
(void) printf("ztest has been running for %lld seconds\n",
(gethrtime() - zs->zs_proc_start) / NANOSEC);
last_run = gethrtime();
delay = MSEC2NSEC(zfs_deadman_checktime_ms);
}
thread_exit();
}
static void
ztest_execute(int test, ztest_info_t *zi, uint64_t id)
{
ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
hrtime_t functime = gethrtime();
int i;
for (i = 0; i < zi->zi_iters; i++)
zi->zi_func(zd, id);
functime = gethrtime() - functime;
atomic_add_64(&zc->zc_count, 1);
atomic_add_64(&zc->zc_time, functime);
if (ztest_opts.zo_verbose >= 4)
(void) printf("%6.2f sec in %s\n",
(double)functime / NANOSEC, zi->zi_funcname);
}
static void
ztest_thread(void *arg)
{
int rand;
uint64_t id = (uintptr_t)arg;
ztest_shared_t *zs = ztest_shared;
uint64_t call_next;
hrtime_t now;
ztest_info_t *zi;
ztest_shared_callstate_t *zc;
while ((now = gethrtime()) < zs->zs_thread_stop) {
/*
* See if it's time to force a crash.
*/
if (now > zs->zs_thread_kill)
ztest_kill(zs);
/*
* If we're getting ENOSPC with some regularity, stop.
*/
if (zs->zs_enospc_count > 10)
break;
/*
* Pick a random function to execute.
*/
rand = ztest_random(ZTEST_FUNCS);
zi = &ztest_info[rand];
zc = ZTEST_GET_SHARED_CALLSTATE(rand);
call_next = zc->zc_next;
if (now >= call_next &&
atomic_cas_64(&zc->zc_next, call_next, call_next +
ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
ztest_execute(rand, zi, id);
}
}
thread_exit();
}
static void
ztest_dataset_name(char *dsname, char *pool, int d)
{
(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
}
static void
ztest_dataset_destroy(int d)
{
char name[ZFS_MAX_DATASET_NAME_LEN];
int t;
ztest_dataset_name(name, ztest_opts.zo_pool, d);
if (ztest_opts.zo_verbose >= 3)
(void) printf("Destroying %s to free up space\n", name);
/*
* Cleanup any non-standard clones and snapshots. In general,
* ztest thread t operates on dataset (t % zopt_datasets),
* so there may be more than one thing to clean up.
*/
for (t = d; t < ztest_opts.zo_threads;
t += ztest_opts.zo_datasets)
ztest_dsl_dataset_cleanup(name, t);
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
}
static void
ztest_dataset_dirobj_verify(ztest_ds_t *zd)
{
uint64_t usedobjs, dirobjs, scratch;
/*
* ZTEST_DIROBJ is the object directory for the entire dataset.
* Therefore, the number of objects in use should equal the
* number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
* If not, we have an object leak.
*
* Note that we can only check this in ztest_dataset_open(),
* when the open-context and syncing-context values agree.
* That's because zap_count() returns the open-context value,
* while dmu_objset_space() returns the rootbp fill count.
*/
VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
ASSERT3U(dirobjs + 1, ==, usedobjs);
}
static int
ztest_dataset_open(int d)
{
ztest_ds_t *zd = &ztest_ds[d];
uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
objset_t *os;
zilog_t *zilog;
char name[ZFS_MAX_DATASET_NAME_LEN];
int error;
ztest_dataset_name(name, ztest_opts.zo_pool, d);
(void) pthread_rwlock_rdlock(&ztest_name_lock);
error = ztest_dataset_create(name);
if (error == ENOSPC) {
(void) pthread_rwlock_unlock(&ztest_name_lock);
ztest_record_enospc(FTAG);
return (error);
}
ASSERT(error == 0 || error == EEXIST);
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
B_TRUE, zd, &os));
(void) pthread_rwlock_unlock(&ztest_name_lock);
ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
zilog = zd->zd_zilog;
if (zilog->zl_header->zh_claim_lr_seq != 0 &&
zilog->zl_header->zh_claim_lr_seq < committed_seq)
fatal(0, "missing log records: claimed %llu < committed %llu",
zilog->zl_header->zh_claim_lr_seq, committed_seq);
ztest_dataset_dirobj_verify(zd);
zil_replay(os, zd, ztest_replay_vector);
ztest_dataset_dirobj_verify(zd);
if (ztest_opts.zo_verbose >= 6)
(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
zd->zd_name,
(u_longlong_t)zilog->zl_parse_blk_count,
(u_longlong_t)zilog->zl_parse_lr_count,
(u_longlong_t)zilog->zl_replaying_seq);
zilog = zil_open(os, ztest_get_data);
if (zilog->zl_replaying_seq != 0 &&
zilog->zl_replaying_seq < committed_seq)
fatal(0, "missing log records: replayed %llu < committed %llu",
zilog->zl_replaying_seq, committed_seq);
return (0);
}
static void
ztest_dataset_close(int d)
{
ztest_ds_t *zd = &ztest_ds[d];
zil_close(zd->zd_zilog);
dmu_objset_disown(zd->zd_os, B_TRUE, zd);
ztest_zd_fini(zd);
}
/* ARGSUSED */
static int
ztest_replay_zil_cb(const char *name, void *arg)
{
objset_t *os;
ztest_ds_t *zdtmp;
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
B_TRUE, FTAG, &os));
zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
ztest_zd_init(zdtmp, NULL, os);
zil_replay(os, zdtmp, ztest_replay_vector);
ztest_zd_fini(zdtmp);
if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
ztest_opts.zo_verbose >= 6) {
zilog_t *zilog = dmu_objset_zil(os);
(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
name,
(u_longlong_t)zilog->zl_parse_blk_count,
(u_longlong_t)zilog->zl_parse_lr_count,
(u_longlong_t)zilog->zl_replaying_seq);
}
umem_free(zdtmp, sizeof (ztest_ds_t));
dmu_objset_disown(os, B_TRUE, FTAG);
return (0);
}
static void
ztest_freeze(void)
{
ztest_ds_t *zd = &ztest_ds[0];
spa_t *spa;
int numloops = 0;
if (ztest_opts.zo_verbose >= 3)
(void) printf("testing spa_freeze()...\n");
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
VERIFY3U(0, ==, ztest_dataset_open(0));
ztest_spa = spa;
/*
* Force the first log block to be transactionally allocated.
* We have to do this before we freeze the pool -- otherwise
* the log chain won't be anchored.
*/
while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
ztest_dmu_object_alloc_free(zd, 0);
zil_commit(zd->zd_zilog, 0);
}
txg_wait_synced(spa_get_dsl(spa), 0);
/*
* Freeze the pool. This stops spa_sync() from doing anything,
* so that the only way to record changes from now on is the ZIL.
*/
spa_freeze(spa);
/*
* Because it is hard to predict how much space a write will actually
* require beforehand, we leave ourselves some fudge space to write over
* capacity.
*/
uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
/*
* Run tests that generate log records but don't alter the pool config
* or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
* We do a txg_wait_synced() after each iteration to force the txg
* to increase well beyond the last synced value in the uberblock.
* The ZIL should be OK with that.
*
* Run a random number of times less than zo_maxloops and ensure we do
* not run out of space on the pool.
*/
while (ztest_random(10) != 0 &&
numloops++ < ztest_opts.zo_maxloops &&
metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
ztest_od_t od;
ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
ztest_io(zd, od.od_object,
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
txg_wait_synced(spa_get_dsl(spa), 0);
}
/*
* Commit all of the changes we just generated.
*/
zil_commit(zd->zd_zilog, 0);
txg_wait_synced(spa_get_dsl(spa), 0);
/*
* Close our dataset and close the pool.
*/
ztest_dataset_close(0);
spa_close(spa, FTAG);
kernel_fini();
/*
* Open and close the pool and dataset to induce log replay.
*/
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
VERIFY3U(0, ==, ztest_dataset_open(0));
ztest_spa = spa;
txg_wait_synced(spa_get_dsl(spa), 0);
ztest_dataset_close(0);
ztest_reguid(NULL, 0);
spa_close(spa, FTAG);
kernel_fini();
}
static void
ztest_import_impl(ztest_shared_t *zs)
{
importargs_t args = { 0 };
nvlist_t *cfg = NULL;
int nsearch = 1;
char *searchdirs[nsearch];
int flags = ZFS_IMPORT_MISSING_LOG;
searchdirs[0] = ztest_opts.zo_dir;
args.paths = nsearch;
args.path = searchdirs;
args.can_be_active = B_FALSE;
VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
&libzpool_config_ops));
VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
}
/*
* Import a storage pool with the given name.
*/
static void
ztest_import(ztest_shared_t *zs)
{
spa_t *spa;
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
ztest_import_impl(zs);
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
zs->zs_metaslab_sz =
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
spa_close(spa, FTAG);
kernel_fini();
if (!ztest_opts.zo_mmp_test) {
ztest_run_zdb(ztest_opts.zo_pool);
ztest_freeze();
ztest_run_zdb(ztest_opts.zo_pool);
}
(void) pthread_rwlock_destroy(&ztest_name_lock);
mutex_destroy(&ztest_vdev_lock);
mutex_destroy(&ztest_checkpoint_lock);
}
/*
* Kick off threads to run tests on all datasets in parallel.
*/
static void
ztest_run(ztest_shared_t *zs)
{
spa_t *spa;
objset_t *os;
kthread_t *resume_thread, *deadman_thread;
kthread_t **run_threads;
uint64_t object;
int error;
int t, d;
ztest_exiting = B_FALSE;
/*
* Initialize parent/child shared state.
*/
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
zs->zs_thread_start = gethrtime();
zs->zs_thread_stop =
zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
zs->zs_thread_kill = zs->zs_thread_stop;
if (ztest_random(100) < ztest_opts.zo_killrate) {
zs->zs_thread_kill -=
ztest_random(ztest_opts.zo_passtime * NANOSEC);
}
mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
offsetof(ztest_cb_data_t, zcd_node));
/*
* Open our pool. It may need to be imported first depending on
* what tests were running when the previous pass was terminated.
*/
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
if (error) {
VERIFY3S(error, ==, ENOENT);
ztest_import_impl(zs);
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
zs->zs_metaslab_sz =
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
}
metaslab_preload_limit = ztest_random(20) + 1;
ztest_spa = spa;
VERIFY0(vdev_raidz_impl_set("cycle"));
dmu_objset_stats_t dds;
VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
dmu_objset_fast_stat(os, &dds);
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
zs->zs_guid = dds.dds_guid;
dmu_objset_disown(os, B_TRUE, FTAG);
/*
* Create a thread to periodically resume suspended I/O.
*/
resume_thread = thread_create(NULL, 0, ztest_resume_thread,
spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
/*
* Create a deadman thread and set to panic if we hang.
*/
deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
/*
* Verify that we can safely inquire about any object,
* whether it's allocated or not. To make it interesting,
* we probe a 5-wide window around each power of two.
* This hits all edge cases, including zero and the max.
*/
for (t = 0; t < 64; t++) {
for (d = -5; d <= 5; d++) {
error = dmu_object_info(spa->spa_meta_objset,
(1ULL << t) + d, NULL);
ASSERT(error == 0 || error == ENOENT ||
error == EINVAL);
}
}
/*
* If we got any ENOSPC errors on the previous run, destroy something.
*/
if (zs->zs_enospc_count != 0) {
int d = ztest_random(ztest_opts.zo_datasets);
ztest_dataset_destroy(d);
}
zs->zs_enospc_count = 0;
/*
* If we were in the middle of ztest_device_removal() and were killed
* we need to ensure the removal and scrub complete before running
* any tests that check ztest_device_removal_active. The removal will
* be restarted automatically when the spa is opened, but we need to
* initiate the scrub manually if it is not already in progress. Note
* that we always run the scrub whenever an indirect vdev exists
* because we have no way of knowing for sure if ztest_device_removal()
* fully completed its scrub before the pool was reimported.
*/
if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
txg_wait_synced(spa_get_dsl(spa), 0);
error = ztest_scrub_impl(spa);
if (error == EBUSY)
error = 0;
ASSERT0(error);
}
run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
UMEM_NOFAIL);
if (ztest_opts.zo_verbose >= 4)
(void) printf("starting main threads...\n");
/*
* Replay all logs of all datasets in the pool. This is primarily for
* temporary datasets which wouldn't otherwise get replayed, which
* can trigger failures when attempting to offline a SLOG in
* ztest_fault_inject().
*/
(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
NULL, DS_FIND_CHILDREN);
/*
* Kick off all the tests that run in parallel.
*/
for (t = 0; t < ztest_opts.zo_threads; t++) {
if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
umem_free(run_threads, ztest_opts.zo_threads *
sizeof (kthread_t *));
return;
}
run_threads[t] = thread_create(NULL, 0, ztest_thread,
(void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
defclsyspri);
}
/*
* Wait for all of the tests to complete.
*/
for (t = 0; t < ztest_opts.zo_threads; t++)
VERIFY0(thread_join(run_threads[t]));
/*
* Close all datasets. This must be done after all the threads
* are joined so we can be sure none of the datasets are in-use
* by any of the threads.
*/
for (t = 0; t < ztest_opts.zo_threads; t++) {
if (t < ztest_opts.zo_datasets)
ztest_dataset_close(t);
}
txg_wait_synced(spa_get_dsl(spa), 0);
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
/* Kill the resume and deadman threads */
ztest_exiting = B_TRUE;
VERIFY0(thread_join(resume_thread));
VERIFY0(thread_join(deadman_thread));
ztest_resume(spa);
/*
* Right before closing the pool, kick off a bunch of async I/O;
* spa_close() should wait for it to complete.
*/
for (object = 1; object < 50; object++) {
dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
ZIO_PRIORITY_SYNC_READ);
}
/* Verify that at least one commit cb was called in a timely fashion */
if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
VERIFY0(zc_min_txg_delay);
spa_close(spa, FTAG);
/*
* Verify that we can loop over all pools.
*/
mutex_enter(&spa_namespace_lock);
for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
if (ztest_opts.zo_verbose > 3)
(void) printf("spa_next: found %s\n", spa_name(spa));
mutex_exit(&spa_namespace_lock);
/*
* Verify that we can export the pool and reimport it under a
* different name.
*/
if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
char name[ZFS_MAX_DATASET_NAME_LEN];
(void) snprintf(name, sizeof (name), "%s_import",
ztest_opts.zo_pool);
ztest_spa_import_export(ztest_opts.zo_pool, name);
ztest_spa_import_export(name, ztest_opts.zo_pool);
}
kernel_fini();
list_destroy(&zcl.zcl_callbacks);
mutex_destroy(&zcl.zcl_callbacks_lock);
(void) pthread_rwlock_destroy(&ztest_name_lock);
mutex_destroy(&ztest_vdev_lock);
mutex_destroy(&ztest_checkpoint_lock);
}
static void
print_time(hrtime_t t, char *timebuf)
{
hrtime_t s = t / NANOSEC;
hrtime_t m = s / 60;
hrtime_t h = m / 60;
hrtime_t d = h / 24;
s -= m * 60;
m -= h * 60;
h -= d * 24;
timebuf[0] = '\0';
if (d)
(void) sprintf(timebuf,
"%llud%02lluh%02llum%02llus", d, h, m, s);
else if (h)
(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
else if (m)
(void) sprintf(timebuf, "%llum%02llus", m, s);
else
(void) sprintf(timebuf, "%llus", s);
}
static nvlist_t *
make_random_props(void)
{
nvlist_t *props;
VERIFY0(nvlist_alloc(&props, NV_UNIQUE_NAME, 0));
if (ztest_random(2) == 0)
return (props);
VERIFY0(nvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1));
return (props);
}
/*
* Create a storage pool with the given name and initial vdev size.
* Then test spa_freeze() functionality.
*/
static void
ztest_init(ztest_shared_t *zs)
{
spa_t *spa;
nvlist_t *nvroot, *props;
int i;
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
/*
* Create the storage pool.
*/
(void) spa_destroy(ztest_opts.zo_pool);
ztest_shared->zs_vdev_next_leaf = 0;
zs->zs_splits = 0;
zs->zs_mirrors = ztest_opts.zo_mirrors;
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
props = make_random_props();
/*
* We don't expect the pool to suspend unless maxfaults == 0,
* in which case ztest_fault_inject() temporarily takes away
* the only valid replica.
*/
VERIFY0(nvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT));
for (i = 0; i < SPA_FEATURES; i++) {
char *buf;
/*
* 75% chance of using the log space map feature. We want ztest
* to exercise both the code paths that use the log space map
* feature and the ones that don't.
*/
if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
continue;
VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
spa_feature_table[i].fi_uname));
VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
free(buf);
}
VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
nvlist_free(nvroot);
nvlist_free(props);
VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
zs->zs_metaslab_sz =
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
spa_close(spa, FTAG);
kernel_fini();
if (!ztest_opts.zo_mmp_test) {
ztest_run_zdb(ztest_opts.zo_pool);
ztest_freeze();
ztest_run_zdb(ztest_opts.zo_pool);
}
(void) pthread_rwlock_destroy(&ztest_name_lock);
mutex_destroy(&ztest_vdev_lock);
mutex_destroy(&ztest_checkpoint_lock);
}
static void
setup_data_fd(void)
{
static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
ztest_fd_data = mkstemp(ztest_name_data);
ASSERT3S(ztest_fd_data, >=, 0);
(void) unlink(ztest_name_data);
}
static int
shared_data_size(ztest_shared_hdr_t *hdr)
{
int size;
size = hdr->zh_hdr_size;
size += hdr->zh_opts_size;
size += hdr->zh_size;
size += hdr->zh_stats_size * hdr->zh_stats_count;
size += hdr->zh_ds_size * hdr->zh_ds_count;
return (size);
}
static void
setup_hdr(void)
{
int size;
ztest_shared_hdr_t *hdr;
hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
ASSERT(hdr != MAP_FAILED);
VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
hdr->zh_size = sizeof (ztest_shared_t);
hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
hdr->zh_stats_count = ZTEST_FUNCS;
hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
hdr->zh_ds_count = ztest_opts.zo_datasets;
size = shared_data_size(hdr);
VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
}
static void
setup_data(void)
{
int size, offset;
ztest_shared_hdr_t *hdr;
uint8_t *buf;
hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
PROT_READ, MAP_SHARED, ztest_fd_data, 0);
ASSERT(hdr != MAP_FAILED);
size = shared_data_size(hdr);
(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
ASSERT(hdr != MAP_FAILED);
buf = (uint8_t *)hdr;
offset = hdr->zh_hdr_size;
ztest_shared_opts = (void *)&buf[offset];
offset += hdr->zh_opts_size;
ztest_shared = (void *)&buf[offset];
offset += hdr->zh_size;
ztest_shared_callstate = (void *)&buf[offset];
offset += hdr->zh_stats_size * hdr->zh_stats_count;
ztest_shared_ds = (void *)&buf[offset];
}
static boolean_t
exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
{
pid_t pid;
int status;
char *cmdbuf = NULL;
pid = fork();
if (cmd == NULL) {
cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
cmd = cmdbuf;
}
if (pid == -1)
fatal(1, "fork failed");
if (pid == 0) { /* child */
char *emptyargv[2] = { cmd, NULL };
char fd_data_str[12];
struct rlimit rl = { 1024, 1024 };
(void) setrlimit(RLIMIT_NOFILE, &rl);
(void) close(ztest_fd_rand);
VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
(void) enable_extended_FILE_stdio(-1, -1);
if (libpath != NULL)
VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
(void) execv(cmd, emptyargv);
ztest_dump_core = B_FALSE;
fatal(B_TRUE, "exec failed: %s", cmd);
}
if (cmdbuf != NULL) {
umem_free(cmdbuf, MAXPATHLEN);
cmd = NULL;
}
while (waitpid(pid, &status, 0) != pid)
continue;
if (statusp != NULL)
*statusp = status;
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0) {
(void) fprintf(stderr, "child exited with code %d\n",
WEXITSTATUS(status));
exit(2);
}
return (B_FALSE);
} else if (WIFSIGNALED(status)) {
if (!ignorekill || WTERMSIG(status) != SIGKILL) {
(void) fprintf(stderr, "child died with signal %d\n",
WTERMSIG(status));
exit(3);
}
return (B_TRUE);
} else {
(void) fprintf(stderr, "something strange happened to child\n");
exit(4);
/* NOTREACHED */
}
}
static void
ztest_run_init(void)
{
int i;
ztest_shared_t *zs = ztest_shared;
/*
* Blow away any existing copy of zpool.cache
*/
(void) remove(spa_config_path);
if (ztest_opts.zo_init == 0) {
if (ztest_opts.zo_verbose >= 1)
(void) printf("Importing pool %s\n",
ztest_opts.zo_pool);
ztest_import(zs);
return;
}
/*
* Create and initialize our storage pool.
*/
for (i = 1; i <= ztest_opts.zo_init; i++) {
bzero(zs, sizeof (ztest_shared_t));
if (ztest_opts.zo_verbose >= 3 &&
ztest_opts.zo_init != 1) {
(void) printf("ztest_init(), pass %d\n", i);
}
ztest_init(zs);
}
}
int
main(int argc, char **argv)
{
int kills = 0;
int iters = 0;
int older = 0;
int newer = 0;
ztest_shared_t *zs;
ztest_info_t *zi;
ztest_shared_callstate_t *zc;
char timebuf[100];
char numbuf[NN_NUMBUF_SZ];
char *cmd;
boolean_t hasalt;
int f;
char *fd_data_str = getenv("ZTEST_FD_DATA");
struct sigaction action;
(void) setvbuf(stdout, NULL, _IOLBF, 0);
dprintf_setup(&argc, argv);
zfs_deadman_synctime_ms = 300000;
zfs_deadman_checktime_ms = 30000;
/*
* As two-word space map entries may not come up often (especially
* if pool and vdev sizes are small) we want to force at least some
* of them so the feature get tested.
*/
zfs_force_some_double_word_sm_entries = B_TRUE;
/*
* Verify that even extensively damaged split blocks with many
* segments can be reconstructed in a reasonable amount of time
* when reconstruction is known to be possible.
*
* Note: the lower this value is, the more damage we inflict, and
* the more time ztest spends in recovering that damage. We chose
* to induce damage 1/100th of the time so recovery is tested but
* not so frequently that ztest doesn't get to test other code paths.
*/
zfs_reconstruct_indirect_damage_fraction = 100;
action.sa_handler = sig_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
if (sigaction(SIGSEGV, &action, NULL) < 0) {
(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
strerror(errno));
exit(EXIT_FAILURE);
}
if (sigaction(SIGABRT, &action, NULL) < 0) {
(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
strerror(errno));
exit(EXIT_FAILURE);
}
/*
* Force random_get_bytes() to use /dev/urandom in order to prevent
* ztest from needlessly depleting the system entropy pool.
*/
random_path = "/dev/urandom";
ztest_fd_rand = open(random_path, O_RDONLY);
ASSERT3S(ztest_fd_rand, >=, 0);
if (!fd_data_str) {
process_options(argc, argv);
setup_data_fd();
setup_hdr();
setup_data();
bcopy(&ztest_opts, ztest_shared_opts,
sizeof (*ztest_shared_opts));
} else {
ztest_fd_data = atoi(fd_data_str);
setup_data();
bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
}
ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
/* Override location of zpool.cache */
VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
ztest_opts.zo_dir) != -1);
ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
UMEM_NOFAIL);
zs = ztest_shared;
if (fd_data_str) {
metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
metaslab_df_alloc_threshold =
zs->zs_metaslab_df_alloc_threshold;
if (zs->zs_do_init)
ztest_run_init();
else
ztest_run(zs);
exit(0);
}
hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
if (ztest_opts.zo_verbose >= 1) {
(void) printf("%llu vdevs, %d datasets, %d threads,"
" %llu seconds...\n",
(u_longlong_t)ztest_opts.zo_vdevs,
ztest_opts.zo_datasets,
ztest_opts.zo_threads,
(u_longlong_t)ztest_opts.zo_time);
}
cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
zs->zs_do_init = B_TRUE;
if (strlen(ztest_opts.zo_alt_ztest) != 0) {
if (ztest_opts.zo_verbose >= 1) {
(void) printf("Executing older ztest for "
"initialization: %s\n", ztest_opts.zo_alt_ztest);
}
VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
ztest_opts.zo_alt_libpath, B_FALSE, NULL));
} else {
VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
}
zs->zs_do_init = B_FALSE;
zs->zs_proc_start = gethrtime();
zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
for (f = 0; f < ZTEST_FUNCS; f++) {
zi = &ztest_info[f];
zc = ZTEST_GET_SHARED_CALLSTATE(f);
if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
zc->zc_next = UINT64_MAX;
else
zc->zc_next = zs->zs_proc_start +
ztest_random(2 * zi->zi_interval[0] + 1);
}
/*
* Run the tests in a loop. These tests include fault injection
* to verify that self-healing data works, and forced crashes
* to verify that we never lose on-disk consistency.
*/
while (gethrtime() < zs->zs_proc_stop) {
int status;
boolean_t killed;
/*
* Initialize the workload counters for each function.
*/
for (f = 0; f < ZTEST_FUNCS; f++) {
zc = ZTEST_GET_SHARED_CALLSTATE(f);
zc->zc_count = 0;
zc->zc_time = 0;
}
/* Set the allocation switch size */
zs->zs_metaslab_df_alloc_threshold =
ztest_random(zs->zs_metaslab_sz / 4) + 1;
if (!hasalt || ztest_random(2) == 0) {
if (hasalt && ztest_opts.zo_verbose >= 1) {
(void) printf("Executing newer ztest: %s\n",
cmd);
}
newer++;
killed = exec_child(cmd, NULL, B_TRUE, &status);
} else {
if (hasalt && ztest_opts.zo_verbose >= 1) {
(void) printf("Executing older ztest: %s\n",
ztest_opts.zo_alt_ztest);
}
older++;
killed = exec_child(ztest_opts.zo_alt_ztest,
ztest_opts.zo_alt_libpath, B_TRUE, &status);
}
if (killed)
kills++;
iters++;
if (ztest_opts.zo_verbose >= 1) {
hrtime_t now = gethrtime();
now = MIN(now, zs->zs_proc_stop);
print_time(zs->zs_proc_stop - now, timebuf);
nicenum(zs->zs_space, numbuf, sizeof (numbuf));
(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
"%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
iters,
WIFEXITED(status) ? "Complete" : "SIGKILL",
(u_longlong_t)zs->zs_enospc_count,
100.0 * zs->zs_alloc / zs->zs_space,
numbuf,
100.0 * (now - zs->zs_proc_start) /
(ztest_opts.zo_time * NANOSEC), timebuf);
}
if (ztest_opts.zo_verbose >= 2) {
(void) printf("\nWorkload summary:\n\n");
(void) printf("%7s %9s %s\n",
"Calls", "Time", "Function");
(void) printf("%7s %9s %s\n",
"-----", "----", "--------");
for (f = 0; f < ZTEST_FUNCS; f++) {
zi = &ztest_info[f];
zc = ZTEST_GET_SHARED_CALLSTATE(f);
print_time(zc->zc_time, timebuf);
(void) printf("%7llu %9s %s\n",
(u_longlong_t)zc->zc_count, timebuf,
zi->zi_funcname);
}
(void) printf("\n");
}
if (!ztest_opts.zo_mmp_test)
ztest_run_zdb(ztest_opts.zo_pool);
}
if (ztest_opts.zo_verbose >= 1) {
if (hasalt) {
(void) printf("%d runs of older ztest: %s\n", older,
ztest_opts.zo_alt_ztest);
(void) printf("%d runs of newer ztest: %s\n", newer,
cmd);
}
(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
kills, iters - kills, (100.0 * kills) / MAX(1, iters));
}
umem_free(cmd, MAXNAMELEN);
return (0);
}