zfs-builds-mm/zfs-2.0.0-rc4/cmd/zfs/zfs_iter.c
2020-10-22 14:20:35 +02:00

512 lines
13 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>.
* Copyright 2013 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#include <libintl.h>
#include <libuutil.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <libzfs.h>
#include "zfs_util.h"
#include "zfs_iter.h"
/*
* This is a private interface used to gather up all the datasets specified on
* the command line so that we can iterate over them in order.
*
* First, we iterate over all filesystems, gathering them together into an
* AVL tree. We report errors for any explicitly specified datasets
* that we couldn't open.
*
* When finished, we have an AVL tree of ZFS handles. We go through and execute
* the provided callback for each one, passing whatever data the user supplied.
*/
typedef struct zfs_node {
zfs_handle_t *zn_handle;
uu_avl_node_t zn_avlnode;
} zfs_node_t;
typedef struct callback_data {
uu_avl_t *cb_avl;
int cb_flags;
zfs_type_t cb_types;
zfs_sort_column_t *cb_sortcol;
zprop_list_t **cb_proplist;
int cb_depth_limit;
int cb_depth;
uint8_t cb_props_table[ZFS_NUM_PROPS];
} callback_data_t;
uu_avl_pool_t *avl_pool;
/*
* Include snaps if they were requested or if this a zfs list where types
* were not specified and the "listsnapshots" property is set on this pool.
*/
static boolean_t
zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb)
{
zpool_handle_t *zph;
if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0)
return (cb->cb_types & ZFS_TYPE_SNAPSHOT);
zph = zfs_get_pool_handle(zhp);
return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL));
}
/*
* Called for each dataset. If the object is of an appropriate type,
* add it to the avl tree and recurse over any children as necessary.
*/
static int
zfs_callback(zfs_handle_t *zhp, void *data)
{
callback_data_t *cb = data;
boolean_t should_close = B_TRUE;
boolean_t include_snaps = zfs_include_snapshots(zhp, cb);
boolean_t include_bmarks = (cb->cb_types & ZFS_TYPE_BOOKMARK);
if ((zfs_get_type(zhp) & cb->cb_types) ||
((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) {
uu_avl_index_t idx;
zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
node->zn_handle = zhp;
uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
&idx) == NULL) {
if (cb->cb_proplist) {
if ((*cb->cb_proplist) &&
!(*cb->cb_proplist)->pl_all)
zfs_prune_proplist(zhp,
cb->cb_props_table);
if (zfs_expand_proplist(zhp, cb->cb_proplist,
(cb->cb_flags & ZFS_ITER_RECVD_PROPS),
(cb->cb_flags & ZFS_ITER_LITERAL_PROPS))
!= 0) {
free(node);
return (-1);
}
}
uu_avl_insert(cb->cb_avl, node, idx);
should_close = B_FALSE;
} else {
free(node);
}
}
/*
* Recurse if necessary.
*/
if (cb->cb_flags & ZFS_ITER_RECURSE &&
((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
cb->cb_depth < cb->cb_depth_limit)) {
cb->cb_depth++;
/*
* If we are not looking for filesystems, we don't need to
* recurse into filesystems when we are at our depth limit.
*/
if ((cb->cb_depth < cb->cb_depth_limit ||
(cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
(cb->cb_types &
(ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME))) &&
zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
(void) zfs_iter_filesystems(zhp, zfs_callback, data);
}
if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT |
ZFS_TYPE_BOOKMARK)) == 0) && include_snaps) {
(void) zfs_iter_snapshots(zhp,
(cb->cb_flags & ZFS_ITER_SIMPLE) != 0,
zfs_callback, data, 0, 0);
}
if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT |
ZFS_TYPE_BOOKMARK)) == 0) && include_bmarks) {
(void) zfs_iter_bookmarks(zhp, zfs_callback, data);
}
cb->cb_depth--;
}
if (should_close)
zfs_close(zhp);
return (0);
}
int
zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
boolean_t reverse)
{
zfs_sort_column_t *col;
zfs_prop_t prop;
if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL &&
!zfs_prop_user(name))
return (-1);
col = safe_malloc(sizeof (zfs_sort_column_t));
col->sc_prop = prop;
col->sc_reverse = reverse;
if (prop == ZPROP_INVAL) {
col->sc_user_prop = safe_malloc(strlen(name) + 1);
(void) strcpy(col->sc_user_prop, name);
}
if (*sc == NULL) {
col->sc_last = col;
*sc = col;
} else {
(*sc)->sc_last->sc_next = col;
(*sc)->sc_last = col;
}
return (0);
}
void
zfs_free_sort_columns(zfs_sort_column_t *sc)
{
zfs_sort_column_t *col;
while (sc != NULL) {
col = sc->sc_next;
free(sc->sc_user_prop);
free(sc);
sc = col;
}
}
int
zfs_sort_only_by_name(const zfs_sort_column_t *sc)
{
return (sc != NULL && sc->sc_next == NULL &&
sc->sc_prop == ZFS_PROP_NAME);
}
/* ARGSUSED */
static int
zfs_compare(const void *larg, const void *rarg, void *unused)
{
zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
const char *lname = zfs_get_name(l);
const char *rname = zfs_get_name(r);
char *lat, *rat;
uint64_t lcreate, rcreate;
int ret;
lat = (char *)strchr(lname, '@');
rat = (char *)strchr(rname, '@');
if (lat != NULL)
*lat = '\0';
if (rat != NULL)
*rat = '\0';
ret = strcmp(lname, rname);
if (ret == 0 && (lat != NULL || rat != NULL)) {
/*
* If we're comparing a dataset to one of its snapshots, we
* always make the full dataset first.
*/
if (lat == NULL) {
ret = -1;
} else if (rat == NULL) {
ret = 1;
} else {
/*
* If we have two snapshots from the same dataset, then
* we want to sort them according to creation time. We
* use the hidden CREATETXG property to get an absolute
* ordering of snapshots.
*/
lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
/*
* Both lcreate and rcreate being 0 means we don't have
* properties and we should compare full name.
*/
if (lcreate == 0 && rcreate == 0)
ret = strcmp(lat + 1, rat + 1);
else if (lcreate < rcreate)
ret = -1;
else if (lcreate > rcreate)
ret = 1;
}
}
if (lat != NULL)
*lat = '@';
if (rat != NULL)
*rat = '@';
return (ret);
}
/*
* Sort datasets by specified columns.
*
* o Numeric types sort in ascending order.
* o String types sort in alphabetical order.
* o Types inappropriate for a row sort that row to the literal
* bottom, regardless of the specified ordering.
*
* If no sort columns are specified, or two datasets compare equally
* across all specified columns, they are sorted alphabetically by name
* with snapshots grouped under their parents.
*/
static int
zfs_sort(const void *larg, const void *rarg, void *data)
{
zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
zfs_sort_column_t *psc;
for (psc = sc; psc != NULL; psc = psc->sc_next) {
char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
char *lstr, *rstr;
uint64_t lnum, rnum;
boolean_t lvalid, rvalid;
int ret = 0;
/*
* We group the checks below the generic code. If 'lstr' and
* 'rstr' are non-NULL, then we do a string based comparison.
* Otherwise, we compare 'lnum' and 'rnum'.
*/
lstr = rstr = NULL;
if (psc->sc_prop == ZPROP_INVAL) {
nvlist_t *luser, *ruser;
nvlist_t *lval, *rval;
luser = zfs_get_user_props(l);
ruser = zfs_get_user_props(r);
lvalid = (nvlist_lookup_nvlist(luser,
psc->sc_user_prop, &lval) == 0);
rvalid = (nvlist_lookup_nvlist(ruser,
psc->sc_user_prop, &rval) == 0);
if (lvalid)
verify(nvlist_lookup_string(lval,
ZPROP_VALUE, &lstr) == 0);
if (rvalid)
verify(nvlist_lookup_string(rval,
ZPROP_VALUE, &rstr) == 0);
} else if (psc->sc_prop == ZFS_PROP_NAME) {
lvalid = rvalid = B_TRUE;
(void) strlcpy(lbuf, zfs_get_name(l), sizeof (lbuf));
(void) strlcpy(rbuf, zfs_get_name(r), sizeof (rbuf));
lstr = lbuf;
rstr = rbuf;
} else if (zfs_prop_is_string(psc->sc_prop)) {
lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
lstr = lbuf;
rstr = rbuf;
} else {
lvalid = zfs_prop_valid_for_type(psc->sc_prop,
zfs_get_type(l), B_FALSE);
rvalid = zfs_prop_valid_for_type(psc->sc_prop,
zfs_get_type(r), B_FALSE);
if (lvalid)
(void) zfs_prop_get_numeric(l, psc->sc_prop,
&lnum, NULL, NULL, 0);
if (rvalid)
(void) zfs_prop_get_numeric(r, psc->sc_prop,
&rnum, NULL, NULL, 0);
}
if (!lvalid && !rvalid)
continue;
else if (!lvalid)
return (1);
else if (!rvalid)
return (-1);
if (lstr)
ret = strcmp(lstr, rstr);
else if (lnum < rnum)
ret = -1;
else if (lnum > rnum)
ret = 1;
if (ret != 0) {
if (psc->sc_reverse == B_TRUE)
ret = (ret < 0) ? 1 : -1;
return (ret);
}
}
return (zfs_compare(larg, rarg, NULL));
}
int
zfs_for_each(int argc, char **argv, int flags, zfs_type_t types,
zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit,
zfs_iter_f callback, void *data)
{
callback_data_t cb = {0};
int ret = 0;
zfs_node_t *node;
uu_avl_walk_t *walk;
avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
if (avl_pool == NULL)
nomem();
cb.cb_sortcol = sortcol;
cb.cb_flags = flags;
cb.cb_proplist = proplist;
cb.cb_types = types;
cb.cb_depth_limit = limit;
/*
* If cb_proplist is provided then in the zfs_handles created we
* retain only those properties listed in cb_proplist and sortcol.
* The rest are pruned. So, the caller should make sure that no other
* properties other than those listed in cb_proplist/sortcol are
* accessed.
*
* If cb_proplist is NULL then we retain all the properties. We
* always retain the zoned property, which some other properties
* need (userquota & friends), and the createtxg property, which
* we need to sort snapshots.
*/
if (cb.cb_proplist && *cb.cb_proplist) {
zprop_list_t *p = *cb.cb_proplist;
while (p) {
if (p->pl_prop >= ZFS_PROP_TYPE &&
p->pl_prop < ZFS_NUM_PROPS) {
cb.cb_props_table[p->pl_prop] = B_TRUE;
}
p = p->pl_next;
}
while (sortcol) {
if (sortcol->sc_prop >= ZFS_PROP_TYPE &&
sortcol->sc_prop < ZFS_NUM_PROPS) {
cb.cb_props_table[sortcol->sc_prop] = B_TRUE;
}
sortcol = sortcol->sc_next;
}
cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE;
cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE;
} else {
(void) memset(cb.cb_props_table, B_TRUE,
sizeof (cb.cb_props_table));
}
if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
nomem();
if (argc == 0) {
/*
* If given no arguments, iterate over all datasets.
*/
cb.cb_flags |= ZFS_ITER_RECURSE;
ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
} else {
int i;
zfs_handle_t *zhp;
zfs_type_t argtype;
/*
* If we're recursive, then we always allow filesystems as
* arguments. If we also are interested in snapshots or
* bookmarks, then we can take volumes as well.
*/
argtype = types;
if (flags & ZFS_ITER_RECURSE) {
argtype |= ZFS_TYPE_FILESYSTEM;
if (types & (ZFS_TYPE_SNAPSHOT | ZFS_TYPE_BOOKMARK))
argtype |= ZFS_TYPE_VOLUME;
}
for (i = 0; i < argc; i++) {
if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) {
zhp = zfs_path_to_zhandle(g_zfs, argv[i],
argtype);
} else {
zhp = zfs_open(g_zfs, argv[i], argtype);
}
if (zhp != NULL)
ret |= zfs_callback(zhp, &cb);
else
ret = 1;
}
}
/*
* At this point we've got our AVL tree full of zfs handles, so iterate
* over each one and execute the real user callback.
*/
for (node = uu_avl_first(cb.cb_avl); node != NULL;
node = uu_avl_next(cb.cb_avl, node))
ret |= callback(node->zn_handle, data);
/*
* Finally, clean up the AVL tree.
*/
if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
nomem();
while ((node = uu_avl_walk_next(walk)) != NULL) {
uu_avl_remove(cb.cb_avl, node);
zfs_close(node->zn_handle);
free(node);
}
uu_avl_walk_end(walk);
uu_avl_destroy(cb.cb_avl);
uu_avl_pool_destroy(avl_pool);
return (ret);
}