735 lines
21 KiB
C
735 lines
21 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2016 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/vdev_initialize.h>
|
|
|
|
/*
|
|
* Value that is written to disk during initialization.
|
|
*/
|
|
#ifdef _ILP32
|
|
unsigned long zfs_initialize_value = 0xdeadbeefUL;
|
|
#else
|
|
unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
|
|
#endif
|
|
|
|
/* maximum number of I/Os outstanding per leaf vdev */
|
|
int zfs_initialize_limit = 1;
|
|
|
|
/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
|
|
uint64_t zfs_initialize_chunk_size = 1024 * 1024;
|
|
|
|
static boolean_t
|
|
vdev_initialize_should_stop(vdev_t *vd)
|
|
{
|
|
return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
|
|
vd->vdev_detached || vd->vdev_top->vdev_removing);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* We pass in the guid instead of the vdev_t since the vdev may
|
|
* have been freed prior to the sync task being processed. This
|
|
* happens when a vdev is detached as we call spa_config_vdev_exit(),
|
|
* stop the initializing thread, schedule the sync task, and free
|
|
* the vdev. Later when the scheduled sync task is invoked, it would
|
|
* find that the vdev has been freed.
|
|
*/
|
|
uint64_t guid = *(uint64_t *)arg;
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
kmem_free(arg, sizeof (uint64_t));
|
|
|
|
vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
|
|
if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
|
|
return;
|
|
|
|
uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
|
|
|
|
VERIFY(vd->vdev_leaf_zap != 0);
|
|
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
|
|
if (last_offset > 0) {
|
|
vd->vdev_initialize_last_offset = last_offset;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
sizeof (last_offset), 1, &last_offset, tx));
|
|
}
|
|
if (vd->vdev_initialize_action_time > 0) {
|
|
uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
|
|
1, &val, tx));
|
|
}
|
|
|
|
uint64_t initialize_state = vd->vdev_initialize_state;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
|
|
&initialize_state, tx));
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (new_state == vd->vdev_initialize_state)
|
|
return;
|
|
|
|
/*
|
|
* Copy the vd's guid, this will be freed by the sync task.
|
|
*/
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
*guid = vd->vdev_guid;
|
|
|
|
/*
|
|
* If we're suspending, then preserving the original start time.
|
|
*/
|
|
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
|
|
vd->vdev_initialize_action_time = gethrestime_sec();
|
|
}
|
|
vd->vdev_initialize_state = new_state;
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
|
|
guid, 2, ZFS_SPACE_CHECK_NONE, tx);
|
|
|
|
switch (new_state) {
|
|
case VDEV_INITIALIZE_ACTIVE:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s activated", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_SUSPENDED:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s suspended", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_CANCELED:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s canceled", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_COMPLETE:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s complete", vd->vdev_path);
|
|
break;
|
|
default:
|
|
panic("invalid state %llu", (unsigned long long)new_state);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_cb(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
|
|
/*
|
|
* The I/O failed because the vdev was unavailable; roll the
|
|
* last offset back. (This works because spa_sync waits on
|
|
* spa_txg_zio before it runs sync tasks.)
|
|
*/
|
|
uint64_t *off =
|
|
&vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
|
|
*off = MIN(*off, zio->io_offset);
|
|
} else {
|
|
/*
|
|
* Since initializing is best-effort, we ignore I/O errors and
|
|
* rely on vdev_probe to determine if the errors are more
|
|
* critical.
|
|
*/
|
|
if (zio->io_error != 0)
|
|
vd->vdev_stat.vs_initialize_errors++;
|
|
|
|
vd->vdev_initialize_bytes_done += zio->io_orig_size;
|
|
}
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
vd->vdev_initialize_inflight--;
|
|
cv_broadcast(&vd->vdev_initialize_io_cv);
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
}
|
|
|
|
/* Takes care of physical writing and limiting # of concurrent ZIOs. */
|
|
static int
|
|
vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
/* Limit inflight initializing I/Os */
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
&vd->vdev_initialize_io_lock);
|
|
}
|
|
vd->vdev_initialize_inflight++;
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
|
|
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
*guid = vd->vdev_guid;
|
|
|
|
/* This is the first write of this txg. */
|
|
dsl_sync_task_nowait(spa_get_dsl(spa),
|
|
vdev_initialize_zap_update_sync, guid, 2,
|
|
ZFS_SPACE_CHECK_RESERVED, tx);
|
|
}
|
|
|
|
/*
|
|
* We know the vdev struct will still be around since all
|
|
* consumers of vdev_free must stop the initialization first.
|
|
*/
|
|
if (vdev_initialize_should_stop(vd)) {
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
vd->vdev_initialize_inflight--;
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
|
|
zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
|
|
size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
|
|
ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
|
|
/* vdev_initialize_cb releases SCL_STATE_ALL */
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Callback to fill each ABD chunk with zfs_initialize_value. len must be
|
|
* divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
|
|
* allocation will guarantee these for us.
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
vdev_initialize_block_fill(void *buf, size_t len, void *unused)
|
|
{
|
|
ASSERT0(len % sizeof (uint64_t));
|
|
#ifdef _ILP32
|
|
for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
|
|
*(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
|
|
}
|
|
#else
|
|
for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
|
|
*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
static abd_t *
|
|
vdev_initialize_block_alloc(void)
|
|
{
|
|
/* Allocate ABD for filler data */
|
|
abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
|
|
|
|
ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
|
|
(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
|
|
vdev_initialize_block_fill, NULL);
|
|
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_block_free(abd_t *data)
|
|
{
|
|
abd_free(data);
|
|
}
|
|
|
|
static int
|
|
vdev_initialize_ranges(vdev_t *vd, abd_t *data)
|
|
{
|
|
avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
|
|
|
|
for (range_seg_t *rs = avl_first(rt); rs != NULL;
|
|
rs = AVL_NEXT(rt, rs)) {
|
|
uint64_t size = rs->rs_end - rs->rs_start;
|
|
|
|
/* Split range into legally-sized physical chunks */
|
|
uint64_t writes_required =
|
|
((size - 1) / zfs_initialize_chunk_size) + 1;
|
|
|
|
for (uint64_t w = 0; w < writes_required; w++) {
|
|
int error;
|
|
|
|
error = vdev_initialize_write(vd,
|
|
VDEV_LABEL_START_SIZE + rs->rs_start +
|
|
(w * zfs_initialize_chunk_size),
|
|
MIN(size - (w * zfs_initialize_chunk_size),
|
|
zfs_initialize_chunk_size), data);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_calculate_progress(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
vd->vdev_initialize_bytes_est = 0;
|
|
vd->vdev_initialize_bytes_done = 0;
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
uint64_t ms_free = msp->ms_size -
|
|
metaslab_allocated_space(msp);
|
|
|
|
if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
|
|
ms_free /= vd->vdev_top->vdev_children;
|
|
|
|
/*
|
|
* Convert the metaslab range to a physical range
|
|
* on our vdev. We use this to determine if we are
|
|
* in the middle of this metaslab range.
|
|
*/
|
|
range_seg_t logical_rs, physical_rs;
|
|
logical_rs.rs_start = msp->ms_start;
|
|
logical_rs.rs_end = msp->ms_start + msp->ms_size;
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
} else if (vd->vdev_initialize_last_offset >
|
|
physical_rs.rs_end) {
|
|
vd->vdev_initialize_bytes_done += ms_free;
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we get here, we're in the middle of initializing this
|
|
* metaslab. Load it and walk the free tree for more accurate
|
|
* progress estimation.
|
|
*/
|
|
VERIFY0(metaslab_load(msp));
|
|
|
|
for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
|
|
rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
|
|
logical_rs.rs_start = rs->rs_start;
|
|
logical_rs.rs_end = rs->rs_end;
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
uint64_t size = physical_rs.rs_end -
|
|
physical_rs.rs_start;
|
|
vd->vdev_initialize_bytes_est += size;
|
|
if (vd->vdev_initialize_last_offset >
|
|
physical_rs.rs_end) {
|
|
vd->vdev_initialize_bytes_done += size;
|
|
} else if (vd->vdev_initialize_last_offset >
|
|
physical_rs.rs_start &&
|
|
vd->vdev_initialize_last_offset <
|
|
physical_rs.rs_end) {
|
|
vd->vdev_initialize_bytes_done +=
|
|
vd->vdev_initialize_last_offset -
|
|
physical_rs.rs_start;
|
|
}
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_initialize_load(vdev_t *vd)
|
|
{
|
|
int err = 0;
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
|
|
vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
sizeof (vd->vdev_initialize_last_offset), 1,
|
|
&vd->vdev_initialize_last_offset);
|
|
if (err == ENOENT) {
|
|
vd->vdev_initialize_last_offset = 0;
|
|
err = 0;
|
|
}
|
|
}
|
|
|
|
vdev_initialize_calculate_progress(vd);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Convert the logical range into a physical range and add it to our
|
|
* avl tree.
|
|
*/
|
|
static void
|
|
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
vdev_t *vd = arg;
|
|
range_seg_t logical_rs, physical_rs;
|
|
logical_rs.rs_start = start;
|
|
logical_rs.rs_end = start + size;
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
IMPLY(vd->vdev_top == vd,
|
|
logical_rs.rs_start == physical_rs.rs_start);
|
|
IMPLY(vd->vdev_top == vd,
|
|
logical_rs.rs_end == physical_rs.rs_end);
|
|
|
|
/* Only add segments that we have not visited yet */
|
|
if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
|
|
return;
|
|
|
|
/* Pick up where we left off mid-range. */
|
|
if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
|
|
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
|
|
"(%llu, %llu)", vd->vdev_path,
|
|
(u_longlong_t)physical_rs.rs_start,
|
|
(u_longlong_t)physical_rs.rs_end,
|
|
(u_longlong_t)vd->vdev_initialize_last_offset,
|
|
(u_longlong_t)physical_rs.rs_end);
|
|
ASSERT3U(physical_rs.rs_end, >,
|
|
vd->vdev_initialize_last_offset);
|
|
physical_rs.rs_start = vd->vdev_initialize_last_offset;
|
|
}
|
|
ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
|
|
|
|
/*
|
|
* With raidz, it's possible that the logical range does not live on
|
|
* this leaf vdev. We only add the physical range to this vdev's if it
|
|
* has a length greater than 0.
|
|
*/
|
|
if (physical_rs.rs_end > physical_rs.rs_start) {
|
|
range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
|
|
physical_rs.rs_end - physical_rs.rs_start);
|
|
} else {
|
|
ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_thread(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error = 0;
|
|
uint64_t ms_count = 0;
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
vd->vdev_initialize_last_offset = 0;
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
|
|
abd_t *deadbeef = vdev_initialize_block_alloc();
|
|
|
|
vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
|
|
|
|
for (uint64_t i = 0; !vd->vdev_detached &&
|
|
i < vd->vdev_top->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
|
|
|
/*
|
|
* If we've expanded the top-level vdev or it's our
|
|
* first pass, calculate our progress.
|
|
*/
|
|
if (vd->vdev_top->vdev_ms_count != ms_count) {
|
|
vdev_initialize_calculate_progress(vd);
|
|
ms_count = vd->vdev_top->vdev_ms_count;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
metaslab_disable(msp);
|
|
mutex_enter(&msp->ms_lock);
|
|
VERIFY0(metaslab_load(msp));
|
|
|
|
range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
|
|
vd);
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
error = vdev_initialize_ranges(vd, deadbeef);
|
|
metaslab_enable(msp, B_TRUE);
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
while (vd->vdev_initialize_inflight > 0) {
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
&vd->vdev_initialize_io_lock);
|
|
}
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
range_tree_destroy(vd->vdev_initialize_tree);
|
|
vdev_initialize_block_free(deadbeef);
|
|
vd->vdev_initialize_tree = NULL;
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
|
|
vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
|
|
}
|
|
ASSERT(vd->vdev_initialize_thread != NULL ||
|
|
vd->vdev_initialize_inflight == 0);
|
|
|
|
/*
|
|
* Drop the vdev_initialize_lock while we sync out the
|
|
* txg since it's possible that a device might be trying to
|
|
* come online and must check to see if it needs to restart an
|
|
* initialization. That thread will be holding the spa_config_lock
|
|
* which would prevent the txg_wait_synced from completing.
|
|
*/
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
vd->vdev_initialize_thread = NULL;
|
|
cv_broadcast(&vd->vdev_initialize_cv);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
|
|
/*
|
|
* Initiates a device. Caller must hold vdev_initialize_lock.
|
|
* Device must be a leaf and not already be initializing.
|
|
*/
|
|
void
|
|
vdev_initialize(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
ASSERT(!vd->vdev_detached);
|
|
ASSERT(!vd->vdev_initialize_exit_wanted);
|
|
ASSERT(!vd->vdev_top->vdev_removing);
|
|
|
|
vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
|
|
vd->vdev_initialize_thread = thread_create(NULL, 0,
|
|
vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
|
|
}
|
|
|
|
/*
|
|
* Wait for the initialize thread to be terminated (cancelled or stopped).
|
|
*/
|
|
static void
|
|
vdev_initialize_stop_wait_impl(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
|
|
while (vd->vdev_initialize_thread != NULL)
|
|
cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
|
|
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
vd->vdev_initialize_exit_wanted = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Wait for vdev initialize threads which were either to cleanly exit.
|
|
*/
|
|
void
|
|
vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
|
|
{
|
|
vdev_t *vd;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
while ((vd = list_remove_head(vd_list)) != NULL) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop initializing a device, with the resultant initializing state being
|
|
* tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
|
|
* a list_t is provided the stopping vdev is inserted in to the list. Callers
|
|
* are then required to call vdev_initialize_stop_wait() to block for all the
|
|
* initialization threads to exit. The caller must hold vdev_initialize_lock
|
|
* and must not be writing to the spa config, as the initializing thread may
|
|
* try to enter the config as a reader before exiting.
|
|
*/
|
|
void
|
|
vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
list_t *vd_list)
|
|
{
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
/*
|
|
* Allow cancel requests to proceed even if the initialize thread
|
|
* has stopped.
|
|
*/
|
|
if (vd->vdev_initialize_thread == NULL &&
|
|
tgt_state != VDEV_INITIALIZE_CANCELED) {
|
|
return;
|
|
}
|
|
|
|
vdev_initialize_change_state(vd, tgt_state);
|
|
vd->vdev_initialize_exit_wanted = B_TRUE;
|
|
|
|
if (vd_list == NULL) {
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
} else {
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
list_insert_tail(vd_list, vd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
list_t *vd_list)
|
|
{
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop(vd, tgt_state, vd_list);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
return;
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
|
|
vd_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convenience function to stop initializing of a vdev tree and set all
|
|
* initialize thread pointers to NULL.
|
|
*/
|
|
void
|
|
vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
list_t vd_list;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
list_create(&vd_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_initialize_node));
|
|
|
|
vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
|
|
vdev_initialize_stop_wait(spa, &vd_list);
|
|
|
|
if (vd->vdev_spa->spa_sync_on) {
|
|
/* Make sure that our state has been synced to disk */
|
|
txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
|
|
}
|
|
|
|
list_destroy(&vd_list);
|
|
}
|
|
|
|
void
|
|
vdev_initialize_restart(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
uint64_t initialize_state = VDEV_INITIALIZE_NONE;
|
|
int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
|
|
sizeof (initialize_state), 1, &initialize_state);
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
vd->vdev_initialize_state = initialize_state;
|
|
|
|
uint64_t timestamp = 0;
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
|
|
sizeof (timestamp), 1, ×tamp);
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
vd->vdev_initialize_action_time = (time_t)timestamp;
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
|
|
vd->vdev_offline) {
|
|
/* load progress for reporting, but don't resume */
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
} else if (vd->vdev_initialize_state ==
|
|
VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
|
|
!vd->vdev_top->vdev_removing &&
|
|
vd->vdev_initialize_thread == NULL) {
|
|
vdev_initialize(vd);
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
vdev_initialize_restart(vd->vdev_child[i]);
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(vdev_initialize);
|
|
EXPORT_SYMBOL(vdev_initialize_stop);
|
|
EXPORT_SYMBOL(vdev_initialize_stop_all);
|
|
EXPORT_SYMBOL(vdev_initialize_stop_wait);
|
|
EXPORT_SYMBOL(vdev_initialize_restart);
|
|
|
|
/* CSTYLED */
|
|
module_param(zfs_initialize_value, ulong, 0644);
|
|
MODULE_PARM_DESC(zfs_initialize_value,
|
|
"Value written during zpool initialize");
|
|
#endif
|