zfs-builds-mm/zfs-2.0.0-rc6/module/zfs/btree.c
2020-11-15 11:35:49 +01:00

2124 lines
65 KiB
C

/*
* CDDL HEADER START
*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2019 by Delphix. All rights reserved.
*/
#include <sys/btree.h>
#include <sys/bitops.h>
#include <sys/zfs_context.h>
kmem_cache_t *zfs_btree_leaf_cache;
/*
* Control the extent of the verification that occurs when zfs_btree_verify is
* called. Primarily used for debugging when extending the btree logic and
* functionality. As the intensity is increased, new verification steps are
* added. These steps are cumulative; intensity = 3 includes the intensity = 1
* and intensity = 2 steps as well.
*
* Intensity 1: Verify that the tree's height is consistent throughout.
* Intensity 2: Verify that a core node's children's parent pointers point
* to the core node.
* Intensity 3: Verify that the total number of elements in the tree matches the
* sum of the number of elements in each node. Also verifies that each node's
* count obeys the invariants (less than or equal to maximum value, greater than
* or equal to half the maximum minus one).
* Intensity 4: Verify that each element compares less than the element
* immediately after it and greater than the one immediately before it using the
* comparator function. For core nodes, also checks that each element is greater
* than the last element in the first of the two nodes it separates, and less
* than the first element in the second of the two nodes.
* Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
* of each node is poisoned appropriately. Note that poisoning always occurs if
* ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
* operation.
*
* Intensity 4 and 5 are particularly expensive to perform; the previous levels
* are a few memory operations per node, while these levels require multiple
* operations per element. In addition, when creating large btrees, these
* operations are called at every step, resulting in extremely slow operation
* (while the asymptotic complexity of the other steps is the same, the
* importance of the constant factors cannot be denied).
*/
int zfs_btree_verify_intensity = 0;
/*
* A convenience function to silence warnings from memmove's return value and
* change argument order to src, dest.
*/
static void
bmov(const void *src, void *dest, size_t size)
{
(void) memmove(dest, src, size);
}
#ifdef _ILP32
#define BTREE_POISON 0xabadb10c
#else
#define BTREE_POISON 0xabadb10cdeadbeef
#endif
static void
zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
if (!hdr->bth_core) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
(void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f,
BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) -
hdr->bth_count * size);
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
node->btc_children[i] =
(zfs_btree_hdr_t *)BTREE_POISON;
}
(void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
(BTREE_CORE_ELEMS - hdr->bth_count) * size);
}
#endif
}
static inline void
zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
uint64_t offset)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
ASSERT3U(offset, >=, hdr->bth_count);
if (!hdr->bth_core) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
(void) memset(leaf->btl_elems + offset * size, 0x0f, size);
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
node->btc_children[offset + 1] =
(zfs_btree_hdr_t *)BTREE_POISON;
(void) memset(node->btc_elems + offset * size, 0x0f, size);
}
#endif
}
static inline void
zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
uint64_t offset)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
uint8_t eval = 0x0f;
if (hdr->bth_core) {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
VERIFY3P(node->btc_children[offset + 1], ==, cval);
for (int i = 0; i < size; i++)
VERIFY3U(node->btc_elems[offset * size + i], ==, eval);
} else {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
for (int i = 0; i < size; i++)
VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval);
}
#endif
}
void
zfs_btree_init(void)
{
zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL,
NULL, 0);
}
void
zfs_btree_fini(void)
{
kmem_cache_destroy(zfs_btree_leaf_cache);
}
void
zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
size_t size)
{
/*
* We need a minimmum of 4 elements so that when we split a node we
* always have at least two elements in each node. This simplifies the
* logic in zfs_btree_bulk_finish, since it means the last leaf will
* always have a left sibling to share with (unless it's the root).
*/
ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4);
bzero(tree, sizeof (*tree));
tree->bt_compar = compar;
tree->bt_elem_size = size;
tree->bt_height = -1;
tree->bt_bulk = NULL;
}
/*
* Find value in the array of elements provided. Uses a simple binary search.
*/
static void *
zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems,
const void *value, zfs_btree_index_t *where)
{
uint64_t max = nelems;
uint64_t min = 0;
while (max > min) {
uint64_t idx = (min + max) / 2;
uint8_t *cur = buf + idx * tree->bt_elem_size;
int comp = tree->bt_compar(cur, value);
if (comp == -1) {
min = idx + 1;
} else if (comp == 1) {
max = idx;
} else {
ASSERT0(comp);
where->bti_offset = idx;
where->bti_before = B_FALSE;
return (cur);
}
}
where->bti_offset = max;
where->bti_before = B_TRUE;
return (NULL);
}
/*
* Find the given value in the tree. where may be passed as null to use as a
* membership test or if the btree is being used as a map.
*/
void *
zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
if (where != NULL) {
where->bti_node = NULL;
where->bti_offset = 0;
}
ASSERT0(tree->bt_num_elems);
return (NULL);
}
/*
* If we're in bulk-insert mode, we check the last spot in the tree
* and the last leaf in the tree before doing the normal search,
* because for most workloads the vast majority of finds in
* bulk-insert mode are to insert new elements.
*/
zfs_btree_index_t idx;
if (tree->bt_bulk != NULL) {
zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
int compar = tree->bt_compar(last_leaf->btl_elems +
((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size),
value);
if (compar < 0) {
/*
* If what they're looking for is after the last
* element, it's not in the tree.
*/
if (where != NULL) {
where->bti_node = (zfs_btree_hdr_t *)last_leaf;
where->bti_offset =
last_leaf->btl_hdr.bth_count;
where->bti_before = B_TRUE;
}
return (NULL);
} else if (compar == 0) {
if (where != NULL) {
where->bti_node = (zfs_btree_hdr_t *)last_leaf;
where->bti_offset =
last_leaf->btl_hdr.bth_count - 1;
where->bti_before = B_FALSE;
}
return (last_leaf->btl_elems +
((last_leaf->btl_hdr.bth_count - 1) *
tree->bt_elem_size));
}
if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) {
/*
* If what they're looking for is after the first
* element in the last leaf, it's in the last leaf or
* it's not in the tree.
*/
void *d = zfs_btree_find_in_buf(tree,
last_leaf->btl_elems, last_leaf->btl_hdr.bth_count,
value, &idx);
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
*where = idx;
}
return (d);
}
}
zfs_btree_core_t *node = NULL;
uint64_t child = 0;
uint64_t depth = 0;
/*
* Iterate down the tree, finding which child the value should be in
* by comparing with the separators.
*/
for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
ASSERT3P(node, !=, NULL);
void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
node->btc_hdr.bth_count, value, &idx);
EQUIV(d != NULL, !idx.bti_before);
if (d != NULL) {
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)node;
*where = idx;
}
return (d);
}
ASSERT(idx.bti_before);
child = idx.bti_offset;
}
/*
* The value is in this leaf, or it would be if it were in the
* tree. Find its proper location and return it.
*/
zfs_btree_leaf_t *leaf = (depth == 0 ?
(zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems,
leaf->btl_hdr.bth_count, value, &idx);
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)leaf;
*where = idx;
}
return (d);
}
/*
* To explain the following functions, it is useful to understand the four
* kinds of shifts used in btree operation. First, a shift is a movement of
* elements within a node. It is used to create gaps for inserting new
* elements and children, or cover gaps created when things are removed. A
* shift has two fundamental properties, each of which can be one of two
* values, making four types of shifts. There is the direction of the shift
* (left or right) and the shape of the shift (parallelogram or isoceles
* trapezoid (shortened to trapezoid hereafter)). The shape distinction only
* applies to shifts of core nodes.
*
* The names derive from the following imagining of the layout of a node:
*
* Elements: * * * * * * * ... * * *
* Children: * * * * * * * * ... * * *
*
* This layout follows from the fact that the elements act as separators
* between pairs of children, and that children root subtrees "below" the
* current node. A left and right shift are fairly self-explanatory; a left
* shift moves things to the left, while a right shift moves things to the
* right. A parallelogram shift is a shift with the same number of elements
* and children being moved, while a trapezoid shift is a shift that moves one
* more children than elements. An example follows:
*
* A parallelogram shift could contain the following:
* _______________
* \* * * * \ * * * ... * * *
* * \ * * * *\ * * * ... * * *
* ---------------
* A trapezoid shift could contain the following:
* ___________
* * / * * * \ * * * ... * * *
* * / * * * *\ * * * ... * * *
* ---------------
*
* Note that a parallelogram shift is always shaped like a "left-leaning"
* parallelogram, where the starting index of the children being moved is
* always one higher than the starting index of the elements being moved. No
* "right-leaning" parallelogram shifts are needed (shifts where the starting
* element index and starting child index being moved are the same) to achieve
* any btree operations, so we ignore them.
*/
enum bt_shift_shape {
BSS_TRAPEZOID,
BSS_PARALLELOGRAM
};
enum bt_shift_direction {
BSD_LEFT,
BSD_RIGHT
};
/*
* Shift elements and children in the provided core node by off spots. The
* first element moved is idx, and count elements are moved. The shape of the
* shift is determined by shape. The direction is determined by dir.
*/
static inline void
bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
uint64_t count, uint64_t off, enum bt_shift_shape shape,
enum bt_shift_direction dir)
{
size_t size = tree->bt_elem_size;
ASSERT(node->btc_hdr.bth_core);
uint8_t *e_start = node->btc_elems + idx * size;
int sign = (dir == BSD_LEFT ? -1 : +1);
uint8_t *e_out = e_start + sign * off * size;
uint64_t e_count = count;
bmov(e_start, e_out, e_count * size);
zfs_btree_hdr_t **c_start = node->btc_children + idx +
(shape == BSS_TRAPEZOID ? 0 : 1);
zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
c_start + off);
uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
bmov(c_start, c_out, c_count * sizeof (*c_start));
}
/*
* Shift elements and children in the provided core node left by one spot.
* The first element moved is idx, and count elements are moved. The
* shape of the shift is determined by trap; true if the shift is a trapezoid,
* false if it is a parallelogram.
*/
static inline void
bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
uint64_t count, enum bt_shift_shape shape)
{
bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
}
/*
* Shift elements and children in the provided core node right by one spot.
* Starts with elements[idx] and children[idx] and one more child than element.
*/
static inline void
bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
uint64_t count, enum bt_shift_shape shape)
{
bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
}
/*
* Shift elements and children in the provided leaf node by off spots.
* The first element moved is idx, and count elements are moved. The direction
* is determined by left.
*/
static inline void
bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx,
uint64_t count, uint64_t off, enum bt_shift_direction dir)
{
size_t size = tree->bt_elem_size;
ASSERT(!node->btl_hdr.bth_core);
uint8_t *start = node->btl_elems + idx * size;
int sign = (dir == BSD_LEFT ? -1 : +1);
uint8_t *out = start + sign * off * size;
bmov(start, out, count * size);
}
static inline void
bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
uint64_t count)
{
bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT);
}
static inline void
bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
uint64_t count)
{
bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT);
}
/*
* Move children and elements from one core node to another. The shape
* parameter behaves the same as it does in the shift logic.
*/
static inline void
bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx,
uint64_t count, zfs_btree_core_t *dest, uint64_t didx,
enum bt_shift_shape shape)
{
size_t size = tree->bt_elem_size;
ASSERT(source->btc_hdr.bth_core);
ASSERT(dest->btc_hdr.bth_core);
bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
count * size);
uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
c_count * sizeof (*source->btc_children));
}
static inline void
bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx,
uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx)
{
size_t size = tree->bt_elem_size;
ASSERT(!source->btl_hdr.bth_core);
ASSERT(!dest->btl_hdr.bth_core);
bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size,
count * size);
}
/*
* Find the first element in the subtree rooted at hdr, return its value and
* put its location in where if non-null.
*/
static void *
zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where)
{
zfs_btree_hdr_t *node;
for (node = hdr; node->bth_core; node =
((zfs_btree_core_t *)node)->btc_children[0])
;
ASSERT(!node->bth_core);
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
if (where != NULL) {
where->bti_node = node;
where->bti_offset = 0;
where->bti_before = B_FALSE;
}
return (&leaf->btl_elems[0]);
}
/* Insert an element and a child into a core node at the given offset. */
static void
zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
uint64_t offset, zfs_btree_hdr_t *new_node, void *buf)
{
uint64_t size = tree->bt_elem_size;
zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
ASSERT3P(par_hdr, ==, new_node->bth_parent);
ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
if (zfs_btree_verify_intensity >= 5) {
zfs_btree_verify_poison_at(tree, par_hdr,
par_hdr->bth_count);
}
/* Shift existing elements and children */
uint64_t count = par_hdr->bth_count - offset;
bt_shift_core_right(tree, parent, offset, count,
BSS_PARALLELOGRAM);
/* Insert new values */
parent->btc_children[offset + 1] = new_node;
bmov(buf, parent->btc_elems + offset * size, size);
par_hdr->bth_count++;
}
/*
* Insert new_node into the parent of old_node directly after old_node, with
* buf as the dividing element between the two.
*/
static void
zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
zfs_btree_hdr_t *new_node, void *buf)
{
ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
uint64_t size = tree->bt_elem_size;
zfs_btree_core_t *parent = old_node->bth_parent;
zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
/*
* If this is the root node we were splitting, we create a new root
* and increase the height of the tree.
*/
if (parent == NULL) {
ASSERT3P(old_node, ==, tree->bt_root);
tree->bt_num_nodes++;
zfs_btree_core_t *new_root =
kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
size, KM_SLEEP);
zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
new_root_hdr->bth_parent = NULL;
new_root_hdr->bth_core = B_TRUE;
new_root_hdr->bth_count = 1;
old_node->bth_parent = new_node->bth_parent = new_root;
new_root->btc_children[0] = old_node;
new_root->btc_children[1] = new_node;
bmov(buf, new_root->btc_elems, size);
tree->bt_height++;
tree->bt_root = new_root_hdr;
zfs_btree_poison_node(tree, new_root_hdr);
return;
}
/*
* Since we have the new separator, binary search for where to put
* new_node.
*/
zfs_btree_index_t idx;
ASSERT(par_hdr->bth_core);
VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
par_hdr->bth_count, buf, &idx), ==, NULL);
ASSERT(idx.bti_before);
uint64_t offset = idx.bti_offset;
ASSERT3U(offset, <=, par_hdr->bth_count);
ASSERT3P(parent->btc_children[offset], ==, old_node);
/*
* If the parent isn't full, shift things to accommodate our insertions
* and return.
*/
if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
return;
}
/*
* We need to split this core node into two. Currently there are
* BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
* BTREE_CORE_ELEMS + 2. Some of the children will be part of the
* current node, and the others will be moved to the new core node.
* There are BTREE_CORE_ELEMS + 1 elements including the new one. One
* will be used as the new separator in our parent, and the others
* will be split among the two core nodes.
*
* Usually we will split the node in half evenly, with
* BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
* instead move only about a quarter of the elements (and children) to
* the new node. Since the average state after a long time is a 3/4
* full node, shortcutting directly to that state improves efficiency.
*
* We do this in two stages: first we split into two nodes, and then we
* reuse our existing logic to insert the new element and child.
*/
uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
2 : 4)) - 1, 2);
uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
tree->bt_num_nodes++;
zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
BTREE_CORE_ELEMS * size, KM_SLEEP);
zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
new_par_hdr->bth_parent = par_hdr->bth_parent;
new_par_hdr->bth_core = B_TRUE;
new_par_hdr->bth_count = move_count;
zfs_btree_poison_node(tree, new_par_hdr);
par_hdr->bth_count = keep_count;
bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
0, BSS_TRAPEZOID);
/* Store the new separator in a buffer. */
uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
bmov(parent->btc_elems + keep_count * size, tmp_buf,
size);
zfs_btree_poison_node(tree, par_hdr);
if (offset < keep_count) {
/* Insert the new node into the left half */
zfs_btree_insert_core_impl(tree, parent, offset, new_node,
buf);
/*
* Move the new separator to the existing buffer.
*/
bmov(tmp_buf, buf, size);
} else if (offset > keep_count) {
/* Insert the new node into the right half */
new_node->bth_parent = new_parent;
zfs_btree_insert_core_impl(tree, new_parent,
offset - keep_count - 1, new_node, buf);
/*
* Move the new separator to the existing buffer.
*/
bmov(tmp_buf, buf, size);
} else {
/*
* Move the new separator into the right half, and replace it
* with buf. We also need to shift back the elements in the
* right half to accommodate new_node.
*/
bt_shift_core_right(tree, new_parent, 0, move_count,
BSS_TRAPEZOID);
new_parent->btc_children[0] = new_node;
bmov(tmp_buf, new_parent->btc_elems, size);
new_par_hdr->bth_count++;
}
kmem_free(tmp_buf, size);
zfs_btree_poison_node(tree, par_hdr);
for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++)
new_parent->btc_children[i]->bth_parent = new_parent;
for (int i = 0; i <= parent->btc_hdr.bth_count; i++)
ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
/*
* Now that the node is split, we need to insert the new node into its
* parent. This may cause further splitting.
*/
zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
&new_parent->btc_hdr, buf);
}
/* Insert an element into a leaf node at the given offset. */
static void
zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
uint64_t idx, const void *value)
{
uint64_t size = tree->bt_elem_size;
uint8_t *start = leaf->btl_elems + (idx * size);
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
uint64_t capacity __maybe_unused = P2ALIGN((BTREE_LEAF_SIZE -
sizeof (zfs_btree_hdr_t)) / size, 2);
uint64_t count = leaf->btl_hdr.bth_count - idx;
ASSERT3U(leaf->btl_hdr.bth_count, <, capacity);
if (zfs_btree_verify_intensity >= 5) {
zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
leaf->btl_hdr.bth_count);
}
bt_shift_leaf_right(tree, leaf, idx, count);
bmov(value, start, size);
hdr->bth_count++;
}
/* Helper function for inserting a new value into leaf at the given index. */
static void
zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
const void *value, uint64_t idx)
{
uint64_t size = tree->bt_elem_size;
uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
sizeof (zfs_btree_hdr_t)) / size, 2);
/*
* If the leaf isn't full, shift the elements after idx and insert
* value.
*/
if (leaf->btl_hdr.bth_count != capacity) {
zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
return;
}
/*
* Otherwise, we split the leaf node into two nodes. If we're not bulk
* inserting, each is of size (capacity / 2). If we are bulk
* inserting, we move a quarter of the elements to the new node so
* inserts into the old node don't cause immediate splitting but the
* tree stays relatively dense. Since the average state after a long
* time is a 3/4 full node, shortcutting directly to that state
* improves efficiency. At the end of the bulk insertion process
* we'll need to go through and fix up any nodes (the last leaf and
* its ancestors, potentially) that are below the minimum.
*
* In either case, we're left with one extra element. The leftover
* element will become the new dividing element between the two nodes.
*/
uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) -
1, 2);
uint64_t keep_count = capacity - move_count - 1;
ASSERT3U(capacity - move_count, >=, 2);
tree->bt_num_nodes++;
zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
KM_SLEEP);
zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
new_hdr->bth_core = B_FALSE;
new_hdr->bth_count = move_count;
zfs_btree_poison_node(tree, new_hdr);
leaf->btl_hdr.bth_count = keep_count;
if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
tree->bt_bulk = new_leaf;
/* Copy the back part to the new leaf. */
bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf,
0);
/* We store the new separator in a buffer we control for simplicity. */
uint8_t *buf = kmem_alloc(size, KM_SLEEP);
bmov(leaf->btl_elems + (keep_count * size), buf, size);
zfs_btree_poison_node(tree, &leaf->btl_hdr);
if (idx < keep_count) {
/* Insert into the existing leaf. */
zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
} else if (idx > keep_count) {
/* Insert into the new leaf. */
zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
1, value);
} else {
/*
* Shift the elements in the new leaf to make room for the
* separator, and use the new value as the new separator.
*/
bt_shift_leaf_right(tree, new_leaf, 0, move_count);
bmov(buf, new_leaf->btl_elems, size);
bmov(value, buf, size);
new_hdr->bth_count++;
}
/*
* Now that the node is split, we need to insert the new node into its
* parent. This may cause further splitting, bur only of core nodes.
*/
zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
buf);
kmem_free(buf, size);
}
static uint64_t
zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
void *buf;
if (hdr->bth_core) {
buf = ((zfs_btree_core_t *)hdr)->btc_elems;
} else {
buf = ((zfs_btree_leaf_t *)hdr)->btl_elems;
}
zfs_btree_index_t idx;
zfs_btree_core_t *parent = hdr->bth_parent;
VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
ASSERT(idx.bti_before);
ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
return (idx.bti_offset);
}
/*
* Take the b-tree out of bulk insert mode. During bulk-insert mode, some
* nodes may violate the invariant that non-root nodes must be at least half
* full. All nodes violating this invariant should be the last node in their
* particular level. To correct the invariant, we take values from their left
* neighbor until they are half full. They must have a left neighbor at their
* level because the last node at a level is not the first node unless it's
* the root.
*/
static void
zfs_btree_bulk_finish(zfs_btree_t *tree)
{
ASSERT3P(tree->bt_bulk, !=, NULL);
ASSERT3P(tree->bt_root, !=, NULL);
zfs_btree_leaf_t *leaf = tree->bt_bulk;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
zfs_btree_core_t *parent = hdr->bth_parent;
uint64_t size = tree->bt_elem_size;
uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
sizeof (zfs_btree_hdr_t)) / size, 2);
/*
* The invariant doesn't apply to the root node, if that's the only
* node in the tree we're done.
*/
if (parent == NULL) {
tree->bt_bulk = NULL;
return;
}
/* First, take elements to rebalance the leaf node. */
if (hdr->bth_count < capacity / 2) {
/*
* First, find the left neighbor. The simplest way to do this
* is to call zfs_btree_prev twice; the first time finds some
* ancestor of this node, and the second time finds the left
* neighbor. The ancestor found is the lowest common ancestor
* of leaf and the neighbor.
*/
zfs_btree_index_t idx = {
.bti_node = hdr,
.bti_offset = 0
};
VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
ASSERT(idx.bti_node->bth_core);
zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
uint64_t common_idx = idx.bti_offset;
VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
ASSERT(!idx.bti_node->bth_core);
zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
zfs_btree_hdr_t *l_hdr = idx.bti_node;
uint64_t move_count = (capacity / 2) - hdr->bth_count;
ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
capacity / 2);
if (zfs_btree_verify_intensity >= 5) {
for (int i = 0; i < move_count; i++) {
zfs_btree_verify_poison_at(tree, hdr,
leaf->btl_hdr.bth_count + i);
}
}
/* First, shift elements in leaf back. */
bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count,
BSD_RIGHT);
/* Next, move the separator from the common ancestor to leaf. */
uint8_t *separator = common->btc_elems + (common_idx * size);
uint8_t *out = leaf->btl_elems + ((move_count - 1) * size);
bmov(separator, out, size);
move_count--;
/*
* Now we move elements from the tail of the left neighbor to
* fill the remaining spots in leaf.
*/
bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
move_count, move_count, leaf, 0);
/*
* Finally, move the new last element in the left neighbor to
* the separator.
*/
bmov(l_neighbor->btl_elems + (l_hdr->bth_count -
move_count - 1) * size, separator, size);
/* Adjust the node's counts, and we're done. */
l_hdr->bth_count -= move_count + 1;
hdr->bth_count += move_count + 1;
ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
ASSERT3U(hdr->bth_count, >=, capacity / 2);
zfs_btree_poison_node(tree, l_hdr);
}
/*
* Now we have to rebalance any ancestors of leaf that may also
* violate the invariant.
*/
capacity = BTREE_CORE_ELEMS;
while (parent->btc_hdr.bth_parent != NULL) {
zfs_btree_core_t *cur = parent;
zfs_btree_hdr_t *hdr = &cur->btc_hdr;
parent = hdr->bth_parent;
/*
* If the invariant isn't violated, move on to the next
* ancestor.
*/
if (hdr->bth_count >= capacity / 2)
continue;
/*
* Because the smallest number of nodes we can move when
* splitting is 2, we never need to worry about not having a
* left sibling (a sibling is a neighbor with the same parent).
*/
uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
ASSERT3U(parent_idx, >, 0);
zfs_btree_core_t *l_neighbor =
(zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
uint64_t move_count = (capacity / 2) - hdr->bth_count;
ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
capacity / 2);
if (zfs_btree_verify_intensity >= 5) {
for (int i = 0; i < move_count; i++) {
zfs_btree_verify_poison_at(tree, hdr,
hdr->bth_count + i);
}
}
/* First, shift things in the right node back. */
bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
BSS_TRAPEZOID, BSD_RIGHT);
/* Next, move the separator to the right node. */
uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
size);
uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
bmov(separator, e_out, size);
/*
* Now, move elements and children from the left node to the
* right. We move one more child than elements.
*/
move_count--;
uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
BSS_TRAPEZOID);
/*
* Finally, move the last element in the left node to the
* separator's position.
*/
move_idx--;
bmov(l_neighbor->btc_elems + move_idx * size, separator, size);
l_neighbor->btc_hdr.bth_count -= move_count + 1;
hdr->bth_count += move_count + 1;
ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
ASSERT3U(hdr->bth_count, >=, capacity / 2);
zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
for (int i = 0; i <= hdr->bth_count; i++)
cur->btc_children[i]->bth_parent = cur;
}
tree->bt_bulk = NULL;
}
/*
* Insert value into tree at the location specified by where.
*/
void
zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
const zfs_btree_index_t *where)
{
zfs_btree_index_t idx = {0};
/* If we're not inserting in the last leaf, end bulk insert mode. */
if (tree->bt_bulk != NULL) {
if (where->bti_node != &tree->bt_bulk->btl_hdr) {
zfs_btree_bulk_finish(tree);
VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
where = &idx;
}
}
tree->bt_num_elems++;
/*
* If this is the first element in the tree, create a leaf root node
* and add the value to it.
*/
if (where->bti_node == NULL) {
ASSERT3U(tree->bt_num_elems, ==, 1);
ASSERT3S(tree->bt_height, ==, -1);
ASSERT3P(tree->bt_root, ==, NULL);
ASSERT0(where->bti_offset);
tree->bt_num_nodes++;
zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
KM_SLEEP);
tree->bt_root = &leaf->btl_hdr;
tree->bt_height++;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
hdr->bth_parent = NULL;
hdr->bth_core = B_FALSE;
hdr->bth_count = 0;
zfs_btree_poison_node(tree, hdr);
zfs_btree_insert_into_leaf(tree, leaf, value, 0);
tree->bt_bulk = leaf;
} else if (!where->bti_node->bth_core) {
/*
* If we're inserting into a leaf, go directly to the helper
* function.
*/
zfs_btree_insert_into_leaf(tree,
(zfs_btree_leaf_t *)where->bti_node, value,
where->bti_offset);
} else {
/*
* If we're inserting into a core node, we can't just shift
* the existing element in that slot in the same node without
* breaking our ordering invariants. Instead we place the new
* value in the node at that spot and then insert the old
* separator into the first slot in the subtree to the right.
*/
ASSERT(where->bti_node->bth_core);
zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
/*
* We can ignore bti_before, because either way the value
* should end up in bti_offset.
*/
uint64_t off = where->bti_offset;
zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
size_t size = tree->bt_elem_size;
uint8_t *buf = kmem_alloc(size, KM_SLEEP);
bmov(node->btc_elems + off * size, buf, size);
bmov(value, node->btc_elems + off * size, size);
/*
* Find the first slot in the subtree to the right, insert
* there.
*/
zfs_btree_index_t new_idx;
VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL);
ASSERT0(new_idx.bti_offset);
ASSERT(!new_idx.bti_node->bth_core);
zfs_btree_insert_into_leaf(tree,
(zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
kmem_free(buf, size);
}
zfs_btree_verify(tree);
}
/*
* Return the first element in the tree, and put its location in where if
* non-null.
*/
void *
zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
ASSERT0(tree->bt_num_elems);
return (NULL);
}
return (zfs_btree_first_helper(tree->bt_root, where));
}
/*
* Find the last element in the subtree rooted at hdr, return its value and
* put its location in where if non-null.
*/
static void *
zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
zfs_btree_index_t *where)
{
zfs_btree_hdr_t *node;
for (node = hdr; node->bth_core; node =
((zfs_btree_core_t *)node)->btc_children[node->bth_count])
;
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
if (where != NULL) {
where->bti_node = node;
where->bti_offset = node->bth_count - 1;
where->bti_before = B_FALSE;
}
return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size);
}
/*
* Return the last element in the tree, and put its location in where if
* non-null.
*/
void *
zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
ASSERT0(tree->bt_num_elems);
return (NULL);
}
return (zfs_btree_last_helper(tree, tree->bt_root, where));
}
/*
* This function contains the logic to find the next node in the tree. A
* helper function is used because there are multiple internal consumemrs of
* this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
* node after we've finished with it.
*/
static void *
zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx,
void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
{
if (idx->bti_node == NULL) {
ASSERT3S(tree->bt_height, ==, -1);
return (NULL);
}
uint64_t offset = idx->bti_offset;
if (!idx->bti_node->bth_core) {
/*
* When finding the next element of an element in a leaf,
* there are two cases. If the element isn't the last one in
* the leaf, in which case we just return the next element in
* the leaf. Otherwise, we need to traverse up our parents
* until we find one where our ancestor isn't the last child
* of its parent. Once we do, the next element is the
* separator after our ancestor in its parent.
*/
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
uint64_t new_off = offset + (idx->bti_before ? 0 : 1);
if (leaf->btl_hdr.bth_count > new_off) {
out_idx->bti_node = &leaf->btl_hdr;
out_idx->bti_offset = new_off;
out_idx->bti_before = B_FALSE;
return (leaf->btl_elems + new_off * tree->bt_elem_size);
}
zfs_btree_hdr_t *prev = &leaf->btl_hdr;
for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
node != NULL; node = node->btc_hdr.bth_parent) {
zfs_btree_hdr_t *hdr = &node->btc_hdr;
ASSERT(hdr->bth_core);
uint64_t i = zfs_btree_find_parent_idx(tree, prev);
if (done_func != NULL)
done_func(tree, prev);
if (i == hdr->bth_count) {
prev = hdr;
continue;
}
out_idx->bti_node = hdr;
out_idx->bti_offset = i;
out_idx->bti_before = B_FALSE;
return (node->btc_elems + i * tree->bt_elem_size);
}
if (done_func != NULL)
done_func(tree, prev);
/*
* We've traversed all the way up and been at the end of the
* node every time, so this was the last element in the tree.
*/
return (NULL);
}
/* If we were before an element in a core node, return that element. */
ASSERT(idx->bti_node->bth_core);
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
if (idx->bti_before) {
out_idx->bti_before = B_FALSE;
return (node->btc_elems + offset * tree->bt_elem_size);
}
/*
* The next element from one in a core node is the first element in
* the subtree just to the right of the separator.
*/
zfs_btree_hdr_t *child = node->btc_children[offset + 1];
return (zfs_btree_first_helper(child, out_idx));
}
/*
* Return the next valued node in the tree. The same address can be safely
* passed for idx and out_idx.
*/
void *
zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx)
{
return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
}
/*
* Return the previous valued node in the tree. The same value can be safely
* passed for idx and out_idx.
*/
void *
zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx)
{
if (idx->bti_node == NULL) {
ASSERT3S(tree->bt_height, ==, -1);
return (NULL);
}
uint64_t offset = idx->bti_offset;
if (!idx->bti_node->bth_core) {
/*
* When finding the previous element of an element in a leaf,
* there are two cases. If the element isn't the first one in
* the leaf, in which case we just return the previous element
* in the leaf. Otherwise, we need to traverse up our parents
* until we find one where our previous ancestor isn't the
* first child. Once we do, the previous element is the
* separator after our previous ancestor.
*/
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
if (offset != 0) {
out_idx->bti_node = &leaf->btl_hdr;
out_idx->bti_offset = offset - 1;
out_idx->bti_before = B_FALSE;
return (leaf->btl_elems + (offset - 1) *
tree->bt_elem_size);
}
zfs_btree_hdr_t *prev = &leaf->btl_hdr;
for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
node != NULL; node = node->btc_hdr.bth_parent) {
zfs_btree_hdr_t *hdr = &node->btc_hdr;
ASSERT(hdr->bth_core);
uint64_t i = zfs_btree_find_parent_idx(tree, prev);
if (i == 0) {
prev = hdr;
continue;
}
out_idx->bti_node = hdr;
out_idx->bti_offset = i - 1;
out_idx->bti_before = B_FALSE;
return (node->btc_elems + (i - 1) * tree->bt_elem_size);
}
/*
* We've traversed all the way up and been at the start of the
* node every time, so this was the first node in the tree.
*/
return (NULL);
}
/*
* The previous element from one in a core node is the last element in
* the subtree just to the left of the separator.
*/
ASSERT(idx->bti_node->bth_core);
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
zfs_btree_hdr_t *child = node->btc_children[offset];
return (zfs_btree_last_helper(tree, child, out_idx));
}
/*
* Get the value at the provided index in the tree.
*
* Note that the value returned from this function can be mutated, but only
* if it will not change the ordering of the element with respect to any other
* elements that could be in the tree.
*/
void *
zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
{
ASSERT(!idx->bti_before);
if (!idx->bti_node->bth_core) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size);
}
ASSERT(idx->bti_node->bth_core);
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
return (node->btc_elems + idx->bti_offset * tree->bt_elem_size);
}
/* Add the given value to the tree. Must not already be in the tree. */
void
zfs_btree_add(zfs_btree_t *tree, const void *node)
{
zfs_btree_index_t where = {0};
VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
zfs_btree_add_idx(tree, node, &where);
}
/* Helper function to free a tree node. */
static void
zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
{
tree->bt_num_nodes--;
if (!node->bth_core) {
kmem_cache_free(zfs_btree_leaf_cache, node);
} else {
kmem_free(node, sizeof (zfs_btree_core_t) +
BTREE_CORE_ELEMS * tree->bt_elem_size);
}
}
/*
* Remove the rm_hdr and the separator to its left from the parent node. The
* buffer that rm_hdr was stored in may already be freed, so its contents
* cannot be accessed.
*/
static void
zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
zfs_btree_hdr_t *rm_hdr)
{
size_t size = tree->bt_elem_size;
uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
zfs_btree_hdr_t *hdr = &node->btc_hdr;
/*
* If the node is the root node and rm_hdr is one of two children,
* promote the other child to the root.
*/
if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
ASSERT3U(hdr->bth_count, ==, 1);
ASSERT3P(tree->bt_root, ==, node);
ASSERT3P(node->btc_children[1], ==, rm_hdr);
tree->bt_root = node->btc_children[0];
node->btc_children[0]->bth_parent = NULL;
zfs_btree_node_destroy(tree, hdr);
tree->bt_height--;
return;
}
uint64_t idx;
for (idx = 0; idx <= hdr->bth_count; idx++) {
if (node->btc_children[idx] == rm_hdr)
break;
}
ASSERT3U(idx, <=, hdr->bth_count);
/*
* If the node is the root or it has more than the minimum number of
* children, just remove the child and separator, and return.
*/
if (hdr->bth_parent == NULL ||
hdr->bth_count > min_count) {
/*
* Shift the element and children to the right of rm_hdr to
* the left by one spot.
*/
bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
BSS_PARALLELOGRAM);
hdr->bth_count--;
zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
return;
}
ASSERT3U(hdr->bth_count, ==, min_count);
/*
* Now we try to take a node from a neighbor. We check left, then
* right. If the neighbor exists and has more than the minimum number
* of elements, we move the separator between us and them to our
* node, move their closest element (last for left, first for right)
* to the separator, and move their closest child to our node. Along
* the way we need to collapse the gap made by idx, and (for our right
* neighbor) the gap made by removing their first element and child.
*
* Note: this logic currently doesn't support taking from a neighbor
* that isn't a sibling (i.e. a neighbor with a different
* parent). This isn't critical functionality, but may be worth
* implementing in the future for completeness' sake.
*/
zfs_btree_core_t *parent = hdr->bth_parent;
uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
parent->btc_children[parent_idx - 1]);
if (l_hdr != NULL && l_hdr->bth_count > min_count) {
/* We can take a node from the left neighbor. */
ASSERT(l_hdr->bth_core);
zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
/*
* Start by shifting the elements and children in the current
* node to the right by one spot.
*/
bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
/*
* Move the separator between node and neighbor to the first
* element slot in the current node.
*/
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bmov(separator, node->btc_elems, size);
/* Move the last child of neighbor to our first child slot. */
zfs_btree_hdr_t **take_child = neighbor->btc_children +
l_hdr->bth_count;
bmov(take_child, node->btc_children, sizeof (*take_child));
node->btc_children[0]->bth_parent = node;
/* Move the last element of neighbor to the separator spot. */
uint8_t *take_elem = neighbor->btc_elems +
(l_hdr->bth_count - 1) * size;
bmov(take_elem, separator, size);
l_hdr->bth_count--;
zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
return;
}
zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
NULL : parent->btc_children[parent_idx + 1]);
if (r_hdr != NULL && r_hdr->bth_count > min_count) {
/* We can take a node from the right neighbor. */
ASSERT(r_hdr->bth_core);
zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
/*
* Shift elements in node left by one spot to overwrite rm_hdr
* and the separator before it.
*/
bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
BSS_PARALLELOGRAM);
/*
* Move the separator between node and neighbor to the last
* element spot in node.
*/
uint8_t *separator = parent->btc_elems + parent_idx * size;
bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size,
size);
/*
* Move the first child of neighbor to the last child spot in
* node.
*/
zfs_btree_hdr_t **take_child = neighbor->btc_children;
bmov(take_child, node->btc_children + hdr->bth_count,
sizeof (*take_child));
node->btc_children[hdr->bth_count]->bth_parent = node;
/* Move the first element of neighbor to the separator spot. */
uint8_t *take_elem = neighbor->btc_elems;
bmov(take_elem, separator, size);
r_hdr->bth_count--;
/*
* Shift the elements and children of neighbor to cover the
* stolen elements.
*/
bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
BSS_TRAPEZOID);
zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
return;
}
/*
* In this case, neither of our neighbors can spare an element, so we
* need to merge with one of them. We prefer the left one,
* arbitrarily. Move the separator into the leftmost merging node
* (which may be us or the left neighbor), and then move the right
* merging node's elements. Once that's done, we go back and delete
* the element we're removing. Finally, go into the parent and delete
* the right merging node and the separator. This may cause further
* merging.
*/
zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
uint64_t new_idx = idx;
if (l_hdr != NULL) {
keep_hdr = l_hdr;
new_rm_hdr = hdr;
new_idx += keep_hdr->bth_count + 1;
} else {
ASSERT3P(r_hdr, !=, NULL);
keep_hdr = hdr;
new_rm_hdr = r_hdr;
parent_idx++;
}
ASSERT(keep_hdr->bth_core);
ASSERT(new_rm_hdr->bth_core);
zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
if (zfs_btree_verify_intensity >= 5) {
for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) {
zfs_btree_verify_poison_at(tree, keep_hdr,
keep_hdr->bth_count + i);
}
}
/* Move the separator into the left node. */
uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bmov(separator, e_out, size);
keep_hdr->bth_count++;
/* Move all our elements and children into the left node. */
bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
keep_hdr->bth_count, BSS_TRAPEZOID);
uint64_t old_count = keep_hdr->bth_count;
/* Update bookkeeping */
keep_hdr->bth_count += new_rm_hdr->bth_count;
ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
/*
* Shift the element and children to the right of rm_hdr to
* the left by one spot.
*/
ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
BSS_PARALLELOGRAM);
keep_hdr->bth_count--;
/* Reparent all our children to point to the left node. */
zfs_btree_hdr_t **new_start = keep->btc_children +
old_count - 1;
for (int i = 0; i < new_rm_hdr->bth_count + 1; i++)
new_start[i]->bth_parent = keep;
for (int i = 0; i <= keep_hdr->bth_count; i++) {
ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
ASSERT3P(keep->btc_children[i], !=, rm_hdr);
}
zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
new_rm_hdr->bth_count = 0;
zfs_btree_node_destroy(tree, new_rm_hdr);
zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
}
/* Remove the element at the specific location. */
void
zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *hdr = where->bti_node;
uint64_t idx = where->bti_offset;
uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
sizeof (zfs_btree_hdr_t)) / size, 2);
ASSERT(!where->bti_before);
if (tree->bt_bulk != NULL) {
/*
* Leave bulk insert mode. Note that our index would be
* invalid after we correct the tree, so we copy the value
* we're planning to remove and find it again after
* bulk_finish.
*/
uint8_t *value = zfs_btree_get(tree, where);
uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
bmov(value, tmp, size);
zfs_btree_bulk_finish(tree);
VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
kmem_free(tmp, size);
hdr = where->bti_node;
idx = where->bti_offset;
}
tree->bt_num_elems--;
/*
* If the element happens to be in a core node, we move a leaf node's
* element into its place and then remove the leaf node element. This
* makes the rebalance logic not need to be recursive both upwards and
* downwards.
*/
if (hdr->bth_core) {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
void *new_value = zfs_btree_last_helper(tree, left_subtree,
where);
ASSERT3P(new_value, !=, NULL);
bmov(new_value, node->btc_elems + idx * size, size);
hdr = where->bti_node;
idx = where->bti_offset;
ASSERT(!where->bti_before);
}
/*
* First, we'll update the leaf's metadata. Then, we shift any
* elements after the idx to the left. After that, we rebalance if
* needed.
*/
ASSERT(!hdr->bth_core);
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
ASSERT3U(hdr->bth_count, >, 0);
uint64_t min_count = (capacity / 2) - 1;
/*
* If we're over the minimum size or this is the root, just overwrite
* the value and return.
*/
if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
hdr->bth_count--;
bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx);
if (hdr->bth_parent == NULL) {
ASSERT0(tree->bt_height);
if (hdr->bth_count == 0) {
tree->bt_root = NULL;
tree->bt_height--;
zfs_btree_node_destroy(tree, &leaf->btl_hdr);
}
}
if (tree->bt_root != NULL)
zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
zfs_btree_verify(tree);
return;
}
ASSERT3U(hdr->bth_count, ==, min_count);
/*
* Now we try to take a node from a sibling. We check left, then
* right. If they exist and have more than the minimum number of
* elements, we move the separator between us and them to our node
* and move their closest element (last for left, first for right) to
* the separator. Along the way we need to collapse the gap made by
* idx, and (for our right neighbor) the gap made by removing their
* first element.
*
* Note: this logic currently doesn't support taking from a neighbor
* that isn't a sibling. This isn't critical functionality, but may be
* worth implementing in the future for completeness' sake.
*/
zfs_btree_core_t *parent = hdr->bth_parent;
uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
parent->btc_children[parent_idx - 1]);
if (l_hdr != NULL && l_hdr->bth_count > min_count) {
/* We can take a node from the left neighbor. */
ASSERT(!l_hdr->bth_core);
/*
* Move our elements back by one spot to make room for the
* stolen element and overwrite the element being removed.
*/
bt_shift_leaf_right(tree, leaf, 0, idx);
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems +
(l_hdr->bth_count - 1) * size;
/* Move the separator to our first spot. */
bmov(separator, leaf->btl_elems, size);
/* Move our neighbor's last element to the separator. */
bmov(take_elem, separator, size);
/* Update the bookkeeping. */
l_hdr->bth_count--;
zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
zfs_btree_verify(tree);
return;
}
zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
NULL : parent->btc_children[parent_idx + 1]);
if (r_hdr != NULL && r_hdr->bth_count > min_count) {
/* We can take a node from the right neighbor. */
ASSERT(!r_hdr->bth_core);
zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
/*
* Move our elements after the element being removed forwards
* by one spot to make room for the stolen element and
* overwrite the element being removed.
*/
bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx -
1);
uint8_t *separator = parent->btc_elems + parent_idx * size;
uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems;
/* Move the separator between us to our last spot. */
bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size,
size);
/* Move our neighbor's first element to the separator. */
bmov(take_elem, separator, size);
/* Update the bookkeeping. */
r_hdr->bth_count--;
/*
* Move our neighbors elements forwards to overwrite the
* stolen element.
*/
bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count);
zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
zfs_btree_verify(tree);
return;
}
/*
* In this case, neither of our neighbors can spare an element, so we
* need to merge with one of them. We prefer the left one,
* arbitrarily. Move the separator into the leftmost merging node
* (which may be us or the left neighbor), and then move the right
* merging node's elements. Once that's done, we go back and delete
* the element we're removing. Finally, go into the parent and delete
* the right merging node and the separator. This may cause further
* merging.
*/
zfs_btree_hdr_t *rm_hdr, *keep_hdr;
uint64_t new_idx = idx;
if (l_hdr != NULL) {
keep_hdr = l_hdr;
rm_hdr = hdr;
new_idx += keep_hdr->bth_count + 1; // 449
} else {
ASSERT3P(r_hdr, !=, NULL);
keep_hdr = hdr;
rm_hdr = r_hdr;
parent_idx++;
}
ASSERT(!keep_hdr->bth_core);
ASSERT(!rm_hdr->bth_core);
ASSERT3U(keep_hdr->bth_count, ==, min_count);
ASSERT3U(rm_hdr->bth_count, ==, min_count);
zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr;
zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
if (zfs_btree_verify_intensity >= 5) {
for (int i = 0; i < rm_hdr->bth_count + 1; i++) {
zfs_btree_verify_poison_at(tree, keep_hdr,
keep_hdr->bth_count + i);
}
}
/*
* Move the separator into the first open spot in the left
* neighbor.
*/
uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size;
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bmov(separator, out, size);
keep_hdr->bth_count++;
/* Move our elements to the left neighbor. */
bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep,
keep_hdr->bth_count);
/* Update the bookkeeping. */
keep_hdr->bth_count += rm_hdr->bth_count;
ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1);
/* Remove the value from the node */
keep_hdr->bth_count--;
bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count -
new_idx);
zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
rm_hdr->bth_count = 0;
zfs_btree_node_destroy(tree, rm_hdr);
/* Remove the emptied node from the parent. */
zfs_btree_remove_from_node(tree, parent, rm_hdr);
zfs_btree_verify(tree);
}
/* Remove the given value from the tree. */
void
zfs_btree_remove(zfs_btree_t *tree, const void *value)
{
zfs_btree_index_t where = {0};
VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
zfs_btree_remove_idx(tree, &where);
}
/* Return the number of elements in the tree. */
ulong_t
zfs_btree_numnodes(zfs_btree_t *tree)
{
return (tree->bt_num_elems);
}
/*
* This function is used to visit all the elements in the tree before
* destroying the tree. This allows the calling code to perform any cleanup it
* needs to do. This is more efficient than just removing the first element
* over and over, because it removes all rebalancing. Once the destroy_nodes()
* function has been called, no other btree operations are valid until it
* returns NULL, which point the only valid operation is zfs_btree_destroy().
*
* example:
*
* zfs_btree_index_t *cookie = NULL;
* my_data_t *node;
*
* while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
* free(node->ptr);
* zfs_btree_destroy(tree);
*
*/
void *
zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
{
if (*cookie == NULL) {
if (tree->bt_height == -1)
return (NULL);
*cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
return (zfs_btree_first(tree, *cookie));
}
void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
zfs_btree_node_destroy);
if (rval == NULL) {
tree->bt_root = NULL;
tree->bt_height = -1;
tree->bt_num_elems = 0;
kmem_free(*cookie, sizeof (**cookie));
tree->bt_bulk = NULL;
}
return (rval);
}
static void
zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (hdr->bth_core) {
zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
for (int i = 0; i <= hdr->bth_count; i++) {
zfs_btree_clear_helper(tree, btc->btc_children[i]);
}
}
zfs_btree_node_destroy(tree, hdr);
}
void
zfs_btree_clear(zfs_btree_t *tree)
{
if (tree->bt_root == NULL) {
ASSERT0(tree->bt_num_elems);
return;
}
zfs_btree_clear_helper(tree, tree->bt_root);
tree->bt_num_elems = 0;
tree->bt_root = NULL;
tree->bt_num_nodes = 0;
tree->bt_height = -1;
tree->bt_bulk = NULL;
}
void
zfs_btree_destroy(zfs_btree_t *tree)
{
ASSERT0(tree->bt_num_elems);
ASSERT3P(tree->bt_root, ==, NULL);
}
/* Verify that every child of this node has the correct parent pointer. */
static void
zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (!hdr->bth_core)
return;
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (int i = 0; i <= hdr->bth_count; i++) {
VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
}
}
/* Verify that every node has the correct parent pointer. */
static void
zfs_btree_verify_pointers(zfs_btree_t *tree)
{
if (tree->bt_height == -1) {
VERIFY3P(tree->bt_root, ==, NULL);
return;
}
VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
zfs_btree_verify_pointers_helper(tree, tree->bt_root);
}
/*
* Verify that all the current node and its children satisfy the count
* invariants, and return the total count in the subtree rooted in this node.
*/
static uint64_t
zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (!hdr->bth_core) {
if (tree->bt_root != hdr && hdr != &tree->bt_bulk->btl_hdr) {
uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2);
VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1);
}
return (hdr->bth_count);
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
uint64_t ret = hdr->bth_count;
if (tree->bt_root != hdr && tree->bt_bulk == NULL)
VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
for (int i = 0; i <= hdr->bth_count; i++) {
ret += zfs_btree_verify_counts_helper(tree,
node->btc_children[i]);
}
return (ret);
}
}
/*
* Verify that all nodes satisfy the invariants and that the total number of
* elements is correct.
*/
static void
zfs_btree_verify_counts(zfs_btree_t *tree)
{
EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
if (tree->bt_height == -1) {
return;
}
VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
tree->bt_num_elems);
}
/*
* Check that the subtree rooted at this node has a uniform height. Returns
* the number of nodes under this node, to help verify bt_num_nodes.
*/
static uint64_t
zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
int64_t height)
{
if (!hdr->bth_core) {
VERIFY0(height);
return (1);
}
VERIFY(hdr->bth_core);
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
uint64_t ret = 1;
for (int i = 0; i <= hdr->bth_count; i++) {
ret += zfs_btree_verify_height_helper(tree,
node->btc_children[i], height - 1);
}
return (ret);
}
/*
* Check that the tree rooted at this node has a uniform height, and that the
* bt_height in the tree is correct.
*/
static void
zfs_btree_verify_height(zfs_btree_t *tree)
{
EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
if (tree->bt_height == -1) {
return;
}
VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
tree->bt_height), ==, tree->bt_num_nodes);
}
/*
* Check that the elements in this node are sorted, and that if this is a core
* node, the separators are properly between the subtrees they separaate and
* that the children also satisfy this requirement.
*/
static void
zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
size_t size = tree->bt_elem_size;
if (!hdr->bth_core) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
for (int i = 1; i < hdr->bth_count; i++) {
VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) *
size, leaf->btl_elems + i * size), ==, -1);
}
return;
}
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (int i = 1; i < hdr->bth_count; i++) {
VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
node->btc_elems + i * size), ==, -1);
}
for (int i = 0; i < hdr->bth_count; i++) {
uint8_t *left_child_last = NULL;
zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
if (left_child_hdr->bth_core) {
zfs_btree_core_t *left_child =
(zfs_btree_core_t *)left_child_hdr;
left_child_last = left_child->btc_elems +
(left_child_hdr->bth_count - 1) * size;
} else {
zfs_btree_leaf_t *left_child =
(zfs_btree_leaf_t *)left_child_hdr;
left_child_last = left_child->btl_elems +
(left_child_hdr->bth_count - 1) * size;
}
if (tree->bt_compar(node->btc_elems + i * size,
left_child_last) != 1) {
panic("btree: compar returned %d (expected 1) at "
"%px %d: compar(%px, %px)", tree->bt_compar(
node->btc_elems + i * size, left_child_last),
(void *)node, i, (void *)(node->btc_elems + i *
size), (void *)left_child_last);
}
uint8_t *right_child_first = NULL;
zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
if (right_child_hdr->bth_core) {
zfs_btree_core_t *right_child =
(zfs_btree_core_t *)right_child_hdr;
right_child_first = right_child->btc_elems;
} else {
zfs_btree_leaf_t *right_child =
(zfs_btree_leaf_t *)right_child_hdr;
right_child_first = right_child->btl_elems;
}
if (tree->bt_compar(node->btc_elems + i * size,
right_child_first) != -1) {
panic("btree: compar returned %d (expected -1) at "
"%px %d: compar(%px, %px)", tree->bt_compar(
node->btc_elems + i * size, right_child_first),
(void *)node, i, (void *)(node->btc_elems + i *
size), (void *)right_child_first);
}
}
for (int i = 0; i <= hdr->bth_count; i++) {
zfs_btree_verify_order_helper(tree, node->btc_children[i]);
}
}
/* Check that all elements in the tree are in sorted order. */
static void
zfs_btree_verify_order(zfs_btree_t *tree)
{
EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
if (tree->bt_height == -1) {
return;
}
zfs_btree_verify_order_helper(tree, tree->bt_root);
}
#ifdef ZFS_DEBUG
/* Check that all unused memory is poisoned correctly. */
static void
zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
size_t size = tree->bt_elem_size;
if (!hdr->bth_core) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
uint8_t val = 0x0f;
for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE -
sizeof (zfs_btree_hdr_t); i++) {
VERIFY3U(leaf->btl_elems[i], ==, val);
}
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
uint8_t val = 0x0f;
for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size;
i++) {
VERIFY3U(node->btc_elems[i], ==, val);
}
for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
VERIFY3P(node->btc_children[i], ==,
(zfs_btree_hdr_t *)BTREE_POISON);
}
for (int i = 0; i <= hdr->bth_count; i++) {
zfs_btree_verify_poison_helper(tree,
node->btc_children[i]);
}
}
}
#endif
/* Check that unused memory in the tree is still poisoned. */
static void
zfs_btree_verify_poison(zfs_btree_t *tree)
{
#ifdef ZFS_DEBUG
if (tree->bt_height == -1)
return;
zfs_btree_verify_poison_helper(tree, tree->bt_root);
#endif
}
void
zfs_btree_verify(zfs_btree_t *tree)
{
if (zfs_btree_verify_intensity == 0)
return;
zfs_btree_verify_height(tree);
if (zfs_btree_verify_intensity == 1)
return;
zfs_btree_verify_pointers(tree);
if (zfs_btree_verify_intensity == 2)
return;
zfs_btree_verify_counts(tree);
if (zfs_btree_verify_intensity == 3)
return;
zfs_btree_verify_order(tree);
if (zfs_btree_verify_intensity == 4)
return;
zfs_btree_verify_poison(tree);
}