zfs-builds-mm/zfs-0.8.4/module/icp/algs/edonr/edonr.c
2020-07-19 16:21:53 +02:00

746 lines
21 KiB
C

/*
* IDI,NTNU
*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright (C) 2009, 2010, Jorn Amundsen <jorn.amundsen@ntnu.no>
* Tweaked Edon-R implementation for SUPERCOP, based on NIST API.
*
* $Id: edonr.c 517 2013-02-17 20:34:39Z joern $
*/
/*
* Portions copyright (c) 2013, Saso Kiselkov, All rights reserved
*/
#include <sys/strings.h>
#include <sys/edonr.h>
#include <sys/debug.h>
/* big endian support, provides no-op's if run on little endian hosts */
#include "edonr_byteorder.h"
#define hashState224(x) ((x)->pipe->p256)
#define hashState256(x) ((x)->pipe->p256)
#define hashState384(x) ((x)->pipe->p512)
#define hashState512(x) ((x)->pipe->p512)
/* shift and rotate shortcuts */
#define shl(x, n) ((x) << n)
#define shr(x, n) ((x) >> n)
#define rotl32(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotr32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define rotl64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#define rotr64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#if !defined(__C99_RESTRICT)
#define restrict /* restrict */
#endif
#define EDONR_VALID_HASHBITLEN(x) \
((x) == 512 || (x) == 384 || (x) == 256 || (x) == 224)
/* EdonR224 initial double chaining pipe */
static const uint32_t i224p2[16] = {
0x00010203ul, 0x04050607ul, 0x08090a0bul, 0x0c0d0e0ful,
0x10111213ul, 0x14151617ul, 0x18191a1bul, 0x1c1d1e1ful,
0x20212223ul, 0x24252627ul, 0x28292a2bul, 0x2c2d2e2ful,
0x30313233ul, 0x34353637ul, 0x38393a3bul, 0x3c3d3e3ful,
};
/* EdonR256 initial double chaining pipe */
static const uint32_t i256p2[16] = {
0x40414243ul, 0x44454647ul, 0x48494a4bul, 0x4c4d4e4ful,
0x50515253ul, 0x54555657ul, 0x58595a5bul, 0x5c5d5e5ful,
0x60616263ul, 0x64656667ul, 0x68696a6bul, 0x6c6d6e6ful,
0x70717273ul, 0x74757677ul, 0x78797a7bul, 0x7c7d7e7ful,
};
/* EdonR384 initial double chaining pipe */
static const uint64_t i384p2[16] = {
0x0001020304050607ull, 0x08090a0b0c0d0e0full,
0x1011121314151617ull, 0x18191a1b1c1d1e1full,
0x2021222324252627ull, 0x28292a2b2c2d2e2full,
0x3031323334353637ull, 0x38393a3b3c3d3e3full,
0x4041424344454647ull, 0x48494a4b4c4d4e4full,
0x5051525354555657ull, 0x58595a5b5c5d5e5full,
0x6061626364656667ull, 0x68696a6b6c6d6e6full,
0x7071727374757677ull, 0x78797a7b7c7d7e7full
};
/* EdonR512 initial double chaining pipe */
static const uint64_t i512p2[16] = {
0x8081828384858687ull, 0x88898a8b8c8d8e8full,
0x9091929394959697ull, 0x98999a9b9c9d9e9full,
0xa0a1a2a3a4a5a6a7ull, 0xa8a9aaabacadaeafull,
0xb0b1b2b3b4b5b6b7ull, 0xb8b9babbbcbdbebfull,
0xc0c1c2c3c4c5c6c7ull, 0xc8c9cacbcccdcecfull,
0xd0d1d2d3d4d5d6d7ull, 0xd8d9dadbdcdddedfull,
0xe0e1e2e3e4e5e6e7ull, 0xe8e9eaebecedeeefull,
0xf0f1f2f3f4f5f6f7ull, 0xf8f9fafbfcfdfeffull
};
/*
* First Latin Square
* 0 7 1 3 2 4 6 5
* 4 1 7 6 3 0 5 2
* 7 0 4 2 5 3 1 6
* 1 4 0 5 6 2 7 3
* 2 3 6 7 1 5 0 4
* 5 2 3 1 7 6 4 0
* 3 6 5 0 4 7 2 1
* 6 5 2 4 0 1 3 7
*/
#define LS1_256(c, x0, x1, x2, x3, x4, x5, x6, x7) \
{ \
uint32_t x04, x17, x23, x56, x07, x26; \
x04 = x0+x4, x17 = x1+x7, x07 = x04+x17; \
s0 = c + x07 + x2; \
s1 = rotl32(x07 + x3, 4); \
s2 = rotl32(x07 + x6, 8); \
x23 = x2 + x3; \
s5 = rotl32(x04 + x23 + x5, 22); \
x56 = x5 + x6; \
s6 = rotl32(x17 + x56 + x0, 24); \
x26 = x23+x56; \
s3 = rotl32(x26 + x7, 13); \
s4 = rotl32(x26 + x1, 17); \
s7 = rotl32(x26 + x4, 29); \
}
#define LS1_512(c, x0, x1, x2, x3, x4, x5, x6, x7) \
{ \
uint64_t x04, x17, x23, x56, x07, x26; \
x04 = x0+x4, x17 = x1+x7, x07 = x04+x17; \
s0 = c + x07 + x2; \
s1 = rotl64(x07 + x3, 5); \
s2 = rotl64(x07 + x6, 15); \
x23 = x2 + x3; \
s5 = rotl64(x04 + x23 + x5, 40); \
x56 = x5 + x6; \
s6 = rotl64(x17 + x56 + x0, 50); \
x26 = x23+x56; \
s3 = rotl64(x26 + x7, 22); \
s4 = rotl64(x26 + x1, 31); \
s7 = rotl64(x26 + x4, 59); \
}
/*
* Second Orthogonal Latin Square
* 0 4 2 3 1 6 5 7
* 7 6 3 2 5 4 1 0
* 5 3 1 6 0 2 7 4
* 1 0 5 4 3 7 2 6
* 2 1 0 7 4 5 6 3
* 3 5 7 0 6 1 4 2
* 4 7 6 1 2 0 3 5
* 6 2 4 5 7 3 0 1
*/
#define LS2_256(c, y0, y1, y2, y3, y4, y5, y6, y7) \
{ \
uint32_t y01, y25, y34, y67, y04, y05, y27, y37; \
y01 = y0+y1, y25 = y2+y5, y05 = y01+y25; \
t0 = ~c + y05 + y7; \
t2 = rotl32(y05 + y3, 9); \
y34 = y3+y4, y04 = y01+y34; \
t1 = rotl32(y04 + y6, 5); \
t4 = rotl32(y04 + y5, 15); \
y67 = y6+y7, y37 = y34+y67; \
t3 = rotl32(y37 + y2, 11); \
t7 = rotl32(y37 + y0, 27); \
y27 = y25+y67; \
t5 = rotl32(y27 + y4, 20); \
t6 = rotl32(y27 + y1, 25); \
}
#define LS2_512(c, y0, y1, y2, y3, y4, y5, y6, y7) \
{ \
uint64_t y01, y25, y34, y67, y04, y05, y27, y37; \
y01 = y0+y1, y25 = y2+y5, y05 = y01+y25; \
t0 = ~c + y05 + y7; \
t2 = rotl64(y05 + y3, 19); \
y34 = y3+y4, y04 = y01+y34; \
t1 = rotl64(y04 + y6, 10); \
t4 = rotl64(y04 + y5, 36); \
y67 = y6+y7, y37 = y34+y67; \
t3 = rotl64(y37 + y2, 29); \
t7 = rotl64(y37 + y0, 55); \
y27 = y25+y67; \
t5 = rotl64(y27 + y4, 44); \
t6 = rotl64(y27 + y1, 48); \
}
#define quasi_exform256(r0, r1, r2, r3, r4, r5, r6, r7) \
{ \
uint32_t s04, s17, s23, s56, t01, t25, t34, t67; \
s04 = s0 ^ s4, t01 = t0 ^ t1; \
r0 = (s04 ^ s1) + (t01 ^ t5); \
t67 = t6 ^ t7; \
r1 = (s04 ^ s7) + (t2 ^ t67); \
s23 = s2 ^ s3; \
r7 = (s23 ^ s5) + (t4 ^ t67); \
t34 = t3 ^ t4; \
r3 = (s23 ^ s4) + (t0 ^ t34); \
s56 = s5 ^ s6; \
r5 = (s3 ^ s56) + (t34 ^ t6); \
t25 = t2 ^ t5; \
r6 = (s2 ^ s56) + (t25 ^ t7); \
s17 = s1 ^ s7; \
r4 = (s0 ^ s17) + (t1 ^ t25); \
r2 = (s17 ^ s6) + (t01 ^ t3); \
}
#define quasi_exform512(r0, r1, r2, r3, r4, r5, r6, r7) \
{ \
uint64_t s04, s17, s23, s56, t01, t25, t34, t67; \
s04 = s0 ^ s4, t01 = t0 ^ t1; \
r0 = (s04 ^ s1) + (t01 ^ t5); \
t67 = t6 ^ t7; \
r1 = (s04 ^ s7) + (t2 ^ t67); \
s23 = s2 ^ s3; \
r7 = (s23 ^ s5) + (t4 ^ t67); \
t34 = t3 ^ t4; \
r3 = (s23 ^ s4) + (t0 ^ t34); \
s56 = s5 ^ s6; \
r5 = (s3 ^ s56) + (t34 ^ t6); \
t25 = t2 ^ t5; \
r6 = (s2 ^ s56) + (t25 ^ t7); \
s17 = s1 ^ s7; \
r4 = (s0 ^ s17) + (t1 ^ t25); \
r2 = (s17 ^ s6) + (t01 ^ t3); \
}
static size_t
Q256(size_t bitlen, const uint32_t *data, uint32_t *restrict p)
{
size_t bl;
for (bl = bitlen; bl >= EdonR256_BLOCK_BITSIZE;
bl -= EdonR256_BLOCK_BITSIZE, data += 16) {
uint32_t s0, s1, s2, s3, s4, s5, s6, s7, t0, t1, t2, t3, t4,
t5, t6, t7;
uint32_t p0, p1, p2, p3, p4, p5, p6, p7, q0, q1, q2, q3, q4,
q5, q6, q7;
const uint32_t defix = 0xaaaaaaaa;
#if defined(MACHINE_IS_BIG_ENDIAN)
uint32_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7, swp8,
swp9, swp10, swp11, swp12, swp13, swp14, swp15;
#define d(j) swp ## j
#define s32(j) ld_swap32((uint32_t *)data + j, swp ## j)
#else
#define d(j) data[j]
#endif
/* First row of quasigroup e-transformations */
#if defined(MACHINE_IS_BIG_ENDIAN)
s32(8);
s32(9);
s32(10);
s32(11);
s32(12);
s32(13);
s32(14);
s32(15);
#endif
LS1_256(defix, d(15), d(14), d(13), d(12), d(11), d(10), d(9),
d(8));
#if defined(MACHINE_IS_BIG_ENDIAN)
s32(0);
s32(1);
s32(2);
s32(3);
s32(4);
s32(5);
s32(6);
s32(7);
#undef s32
#endif
LS2_256(defix, d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7));
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, d(8), d(9), d(10), d(11), d(12), d(13), d(14),
d(15));
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Second row of quasigroup e-transformations */
LS1_256(defix, p[8], p[9], p[10], p[11], p[12], p[13], p[14],
p[15]);
LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Third row of quasigroup e-transformations */
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Fourth row of quasigroup e-transformations */
LS1_256(defix, d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0));
LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
/* Edon-R tweak on the original SHA-3 Edon-R submission. */
p[0] ^= d(8) ^ p0;
p[1] ^= d(9) ^ p1;
p[2] ^= d(10) ^ p2;
p[3] ^= d(11) ^ p3;
p[4] ^= d(12) ^ p4;
p[5] ^= d(13) ^ p5;
p[6] ^= d(14) ^ p6;
p[7] ^= d(15) ^ p7;
p[8] ^= d(0) ^ q0;
p[9] ^= d(1) ^ q1;
p[10] ^= d(2) ^ q2;
p[11] ^= d(3) ^ q3;
p[12] ^= d(4) ^ q4;
p[13] ^= d(5) ^ q5;
p[14] ^= d(6) ^ q6;
p[15] ^= d(7) ^ q7;
}
#undef d
return (bitlen - bl);
}
/*
* Why is this #pragma here?
*
* Checksum functions like this one can go over the stack frame size check
* Linux imposes on 32-bit platforms (-Wframe-larger-than=1024). We can
* safely ignore the compiler error since we know that in ZoL, that
* the function will be called from a worker thread that won't be using
* much stack. The only function that goes over the 1k limit is Q512(),
* which only goes over it by a hair (1248 bytes on ARM32).
*/
#include <sys/isa_defs.h> /* for _ILP32 */
#ifdef _ILP32 /* We're 32-bit, assume small stack frames */
#pragma GCC diagnostic ignored "-Wframe-larger-than="
#endif
#if defined(__IBMC__) && defined(_AIX) && defined(__64BIT__)
static inline size_t
#else
static size_t
#endif
Q512(size_t bitlen, const uint64_t *data, uint64_t *restrict p)
{
size_t bl;
for (bl = bitlen; bl >= EdonR512_BLOCK_BITSIZE;
bl -= EdonR512_BLOCK_BITSIZE, data += 16) {
uint64_t s0, s1, s2, s3, s4, s5, s6, s7, t0, t1, t2, t3, t4,
t5, t6, t7;
uint64_t p0, p1, p2, p3, p4, p5, p6, p7, q0, q1, q2, q3, q4,
q5, q6, q7;
const uint64_t defix = 0xaaaaaaaaaaaaaaaaull;
#if defined(MACHINE_IS_BIG_ENDIAN)
uint64_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7, swp8,
swp9, swp10, swp11, swp12, swp13, swp14, swp15;
#define d(j) swp##j
#define s64(j) ld_swap64((uint64_t *)data+j, swp##j)
#else
#define d(j) data[j]
#endif
/* First row of quasigroup e-transformations */
#if defined(MACHINE_IS_BIG_ENDIAN)
s64(8);
s64(9);
s64(10);
s64(11);
s64(12);
s64(13);
s64(14);
s64(15);
#endif
LS1_512(defix, d(15), d(14), d(13), d(12), d(11), d(10), d(9),
d(8));
#if defined(MACHINE_IS_BIG_ENDIAN)
s64(0);
s64(1);
s64(2);
s64(3);
s64(4);
s64(5);
s64(6);
s64(7);
#undef s64
#endif
LS2_512(defix, d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7));
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, d(8), d(9), d(10), d(11), d(12), d(13), d(14),
d(15));
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Second row of quasigroup e-transformations */
LS1_512(defix, p[8], p[9], p[10], p[11], p[12], p[13], p[14],
p[15]);
LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Third row of quasigroup e-transformations */
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Fourth row of quasigroup e-transformations */
LS1_512(defix, d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0));
LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
LS2_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
/* Edon-R tweak on the original SHA-3 Edon-R submission. */
p[0] ^= d(8) ^ p0;
p[1] ^= d(9) ^ p1;
p[2] ^= d(10) ^ p2;
p[3] ^= d(11) ^ p3;
p[4] ^= d(12) ^ p4;
p[5] ^= d(13) ^ p5;
p[6] ^= d(14) ^ p6;
p[7] ^= d(15) ^ p7;
p[8] ^= d(0) ^ q0;
p[9] ^= d(1) ^ q1;
p[10] ^= d(2) ^ q2;
p[11] ^= d(3) ^ q3;
p[12] ^= d(4) ^ q4;
p[13] ^= d(5) ^ q5;
p[14] ^= d(6) ^ q6;
p[15] ^= d(7) ^ q7;
}
#undef d
return (bitlen - bl);
}
void
EdonRInit(EdonRState *state, size_t hashbitlen)
{
ASSERT(EDONR_VALID_HASHBITLEN(hashbitlen));
switch (hashbitlen) {
case 224:
state->hashbitlen = 224;
state->bits_processed = 0;
state->unprocessed_bits = 0;
bcopy(i224p2, hashState224(state)->DoublePipe,
16 * sizeof (uint32_t));
break;
case 256:
state->hashbitlen = 256;
state->bits_processed = 0;
state->unprocessed_bits = 0;
bcopy(i256p2, hashState256(state)->DoublePipe,
16 * sizeof (uint32_t));
break;
case 384:
state->hashbitlen = 384;
state->bits_processed = 0;
state->unprocessed_bits = 0;
bcopy(i384p2, hashState384(state)->DoublePipe,
16 * sizeof (uint64_t));
break;
case 512:
state->hashbitlen = 512;
state->bits_processed = 0;
state->unprocessed_bits = 0;
bcopy(i512p2, hashState224(state)->DoublePipe,
16 * sizeof (uint64_t));
break;
}
}
void
EdonRUpdate(EdonRState *state, const uint8_t *data, size_t databitlen)
{
uint32_t *data32;
uint64_t *data64;
size_t bits_processed;
ASSERT(EDONR_VALID_HASHBITLEN(state->hashbitlen));
switch (state->hashbitlen) {
case 224:
case 256:
if (state->unprocessed_bits > 0) {
/* LastBytes = databitlen / 8 */
int LastBytes = (int)databitlen >> 3;
ASSERT(state->unprocessed_bits + databitlen <=
EdonR256_BLOCK_SIZE * 8);
bcopy(data, hashState256(state)->LastPart
+ (state->unprocessed_bits >> 3), LastBytes);
state->unprocessed_bits += (int)databitlen;
databitlen = state->unprocessed_bits;
/* LINTED E_BAD_PTR_CAST_ALIGN */
data32 = (uint32_t *)hashState256(state)->LastPart;
} else
/* LINTED E_BAD_PTR_CAST_ALIGN */
data32 = (uint32_t *)data;
bits_processed = Q256(databitlen, data32,
hashState256(state)->DoublePipe);
state->bits_processed += bits_processed;
databitlen -= bits_processed;
state->unprocessed_bits = (int)databitlen;
if (databitlen > 0) {
/* LastBytes = Ceil(databitlen / 8) */
int LastBytes =
((~(((-(int)databitlen) >> 3) & 0x01ff)) +
1) & 0x01ff;
data32 += bits_processed >> 5; /* byte size update */
bcopy(data32, hashState256(state)->LastPart, LastBytes);
}
break;
case 384:
case 512:
if (state->unprocessed_bits > 0) {
/* LastBytes = databitlen / 8 */
int LastBytes = (int)databitlen >> 3;
ASSERT(state->unprocessed_bits + databitlen <=
EdonR512_BLOCK_SIZE * 8);
bcopy(data, hashState512(state)->LastPart
+ (state->unprocessed_bits >> 3), LastBytes);
state->unprocessed_bits += (int)databitlen;
databitlen = state->unprocessed_bits;
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState512(state)->LastPart;
} else
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)data;
bits_processed = Q512(databitlen, data64,
hashState512(state)->DoublePipe);
state->bits_processed += bits_processed;
databitlen -= bits_processed;
state->unprocessed_bits = (int)databitlen;
if (databitlen > 0) {
/* LastBytes = Ceil(databitlen / 8) */
int LastBytes =
((~(((-(int)databitlen) >> 3) & 0x03ff)) +
1) & 0x03ff;
data64 += bits_processed >> 6; /* byte size update */
bcopy(data64, hashState512(state)->LastPart, LastBytes);
}
break;
}
}
void
EdonRFinal(EdonRState *state, uint8_t *hashval)
{
uint32_t *data32;
uint64_t *data64, num_bits;
size_t databitlen;
int LastByte, PadOnePosition;
num_bits = state->bits_processed + state->unprocessed_bits;
ASSERT(EDONR_VALID_HASHBITLEN(state->hashbitlen));
switch (state->hashbitlen) {
case 224:
case 256:
LastByte = (int)state->unprocessed_bits >> 3;
PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
hashState256(state)->LastPart[LastByte] =
(hashState256(state)->LastPart[LastByte]
& (0xff << (PadOnePosition + 1))) ^
(0x01 << PadOnePosition);
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState256(state)->LastPart;
if (state->unprocessed_bits < 448) {
(void) memset((hashState256(state)->LastPart) +
LastByte + 1, 0x00,
EdonR256_BLOCK_SIZE - LastByte - 9);
databitlen = EdonR256_BLOCK_SIZE * 8;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 7);
#else
data64[7] = num_bits;
#endif
} else {
(void) memset((hashState256(state)->LastPart) +
LastByte + 1, 0x00,
EdonR256_BLOCK_SIZE * 2 - LastByte - 9);
databitlen = EdonR256_BLOCK_SIZE * 16;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 15);
#else
data64[15] = num_bits;
#endif
}
/* LINTED E_BAD_PTR_CAST_ALIGN */
data32 = (uint32_t *)hashState256(state)->LastPart;
state->bits_processed += Q256(databitlen, data32,
hashState256(state)->DoublePipe);
break;
case 384:
case 512:
LastByte = (int)state->unprocessed_bits >> 3;
PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
hashState512(state)->LastPart[LastByte] =
(hashState512(state)->LastPart[LastByte]
& (0xff << (PadOnePosition + 1))) ^
(0x01 << PadOnePosition);
/* LINTED E_BAD_PTR_CAST_ALIGN */
data64 = (uint64_t *)hashState512(state)->LastPart;
if (state->unprocessed_bits < 960) {
(void) memset((hashState512(state)->LastPart) +
LastByte + 1, 0x00,
EdonR512_BLOCK_SIZE - LastByte - 9);
databitlen = EdonR512_BLOCK_SIZE * 8;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 15);
#else
data64[15] = num_bits;
#endif
} else {
(void) memset((hashState512(state)->LastPart) +
LastByte + 1, 0x00,
EdonR512_BLOCK_SIZE * 2 - LastByte - 9);
databitlen = EdonR512_BLOCK_SIZE * 16;
#if defined(MACHINE_IS_BIG_ENDIAN)
st_swap64(num_bits, data64 + 31);
#else
data64[31] = num_bits;
#endif
}
state->bits_processed += Q512(databitlen, data64,
hashState512(state)->DoublePipe);
break;
}
switch (state->hashbitlen) {
case 224: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint32_t *d32 = (uint32_t *)hashval;
uint32_t *s32 = hashState224(state)->DoublePipe + 9;
int j;
for (j = 0; j < EdonR224_DIGEST_SIZE >> 2; j++)
st_swap32(s32[j], d32 + j);
#else
bcopy(hashState256(state)->DoublePipe + 9, hashval,
EdonR224_DIGEST_SIZE);
#endif
break;
}
case 256: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint32_t *d32 = (uint32_t *)hashval;
uint32_t *s32 = hashState224(state)->DoublePipe + 8;
int j;
for (j = 0; j < EdonR256_DIGEST_SIZE >> 2; j++)
st_swap32(s32[j], d32 + j);
#else
bcopy(hashState256(state)->DoublePipe + 8, hashval,
EdonR256_DIGEST_SIZE);
#endif
break;
}
case 384: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint64_t *d64 = (uint64_t *)hashval;
uint64_t *s64 = hashState384(state)->DoublePipe + 10;
int j;
for (j = 0; j < EdonR384_DIGEST_SIZE >> 3; j++)
st_swap64(s64[j], d64 + j);
#else
bcopy(hashState384(state)->DoublePipe + 10, hashval,
EdonR384_DIGEST_SIZE);
#endif
break;
}
case 512: {
#if defined(MACHINE_IS_BIG_ENDIAN)
uint64_t *d64 = (uint64_t *)hashval;
uint64_t *s64 = hashState512(state)->DoublePipe + 8;
int j;
for (j = 0; j < EdonR512_DIGEST_SIZE >> 3; j++)
st_swap64(s64[j], d64 + j);
#else
bcopy(hashState512(state)->DoublePipe + 8, hashval,
EdonR512_DIGEST_SIZE);
#endif
break;
}
}
}
void
EdonRHash(size_t hashbitlen, const uint8_t *data, size_t databitlen,
uint8_t *hashval)
{
EdonRState state;
EdonRInit(&state, hashbitlen);
EdonRUpdate(&state, data, databitlen);
EdonRFinal(&state, hashval);
}
#ifdef _KERNEL
EXPORT_SYMBOL(EdonRInit);
EXPORT_SYMBOL(EdonRUpdate);
EXPORT_SYMBOL(EdonRHash);
EXPORT_SYMBOL(EdonRFinal);
#endif