zfs-builds-mm/zfs-0.8.1/module/zfs/fm.c
2019-07-06 23:40:11 +02:00

1684 lines
40 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Fault Management Architecture (FMA) Resource and Protocol Support
*
* The routines contained herein provide services to support kernel subsystems
* in publishing fault management telemetry (see PSARC 2002/412 and 2003/089).
*
* Name-Value Pair Lists
*
* The embodiment of an FMA protocol element (event, fmri or authority) is a
* name-value pair list (nvlist_t). FMA-specific nvlist construtor and
* destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used
* to create an nvpair list using custom allocators. Callers may choose to
* allocate either from the kernel memory allocator, or from a preallocated
* buffer, useful in constrained contexts like high-level interrupt routines.
*
* Protocol Event and FMRI Construction
*
* Convenience routines are provided to construct nvlist events according to
* the FMA Event Protocol and Naming Schema specification for ereports and
* FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes.
*
* ENA Manipulation
*
* Routines to generate ENA formats 0, 1 and 2 are available as well as
* routines to increment formats 1 and 2. Individual fields within the
* ENA are extractable via fm_ena_time_get(), fm_ena_id_get(),
* fm_ena_format_get() and fm_ena_gen_get().
*/
#include <sys/types.h>
#include <sys/time.h>
#include <sys/list.h>
#include <sys/nvpair.h>
#include <sys/cmn_err.h>
#include <sys/sysmacros.h>
#include <sys/sunddi.h>
#include <sys/systeminfo.h>
#include <sys/fm/util.h>
#include <sys/fm/protocol.h>
#include <sys/kstat.h>
#include <sys/zfs_context.h>
#ifdef _KERNEL
#include <sys/atomic.h>
#include <sys/condvar.h>
#include <sys/console.h>
#include <sys/kobj.h>
#include <sys/time.h>
#include <sys/zfs_ioctl.h>
int zfs_zevent_len_max = 0;
int zfs_zevent_cols = 80;
int zfs_zevent_console = 0;
static int zevent_len_cur = 0;
static int zevent_waiters = 0;
static int zevent_flags = 0;
/* Num events rate limited since the last time zfs_zevent_next() was called */
static uint64_t ratelimit_dropped = 0;
/*
* The EID (Event IDentifier) is used to uniquely tag a zevent when it is
* posted. The posted EIDs are monotonically increasing but not persistent.
* They will be reset to the initial value (1) each time the kernel module is
* loaded.
*/
static uint64_t zevent_eid = 0;
static kmutex_t zevent_lock;
static list_t zevent_list;
static kcondvar_t zevent_cv;
#endif /* _KERNEL */
/*
* Common fault management kstats to record event generation failures
*/
struct erpt_kstat {
kstat_named_t erpt_dropped; /* num erpts dropped on post */
kstat_named_t erpt_set_failed; /* num erpt set failures */
kstat_named_t fmri_set_failed; /* num fmri set failures */
kstat_named_t payload_set_failed; /* num payload set failures */
};
static struct erpt_kstat erpt_kstat_data = {
{ "erpt-dropped", KSTAT_DATA_UINT64 },
{ "erpt-set-failed", KSTAT_DATA_UINT64 },
{ "fmri-set-failed", KSTAT_DATA_UINT64 },
{ "payload-set-failed", KSTAT_DATA_UINT64 }
};
kstat_t *fm_ksp;
#ifdef _KERNEL
/*
* Formatting utility function for fm_nvprintr. We attempt to wrap chunks of
* output so they aren't split across console lines, and return the end column.
*/
/*PRINTFLIKE4*/
static int
fm_printf(int depth, int c, int cols, const char *format, ...)
{
va_list ap;
int width;
char c1;
va_start(ap, format);
width = vsnprintf(&c1, sizeof (c1), format, ap);
va_end(ap);
if (c + width >= cols) {
console_printf("\n");
c = 0;
if (format[0] != ' ' && depth > 0) {
console_printf(" ");
c++;
}
}
va_start(ap, format);
console_vprintf(format, ap);
va_end(ap);
return ((c + width) % cols);
}
/*
* Recursively print an nvlist in the specified column width and return the
* column we end up in. This function is called recursively by fm_nvprint(),
* below. We generically format the entire nvpair using hexadecimal
* integers and strings, and elide any integer arrays. Arrays are basically
* used for cache dumps right now, so we suppress them so as not to overwhelm
* the amount of console output we produce at panic time. This can be further
* enhanced as FMA technology grows based upon the needs of consumers. All
* FMA telemetry is logged using the dump device transport, so the console
* output serves only as a fallback in case this procedure is unsuccessful.
*/
static int
fm_nvprintr(nvlist_t *nvl, int d, int c, int cols)
{
nvpair_t *nvp;
for (nvp = nvlist_next_nvpair(nvl, NULL);
nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) {
data_type_t type = nvpair_type(nvp);
const char *name = nvpair_name(nvp);
boolean_t b;
uint8_t i8;
uint16_t i16;
uint32_t i32;
uint64_t i64;
char *str;
nvlist_t *cnv;
if (strcmp(name, FM_CLASS) == 0)
continue; /* already printed by caller */
c = fm_printf(d, c, cols, " %s=", name);
switch (type) {
case DATA_TYPE_BOOLEAN:
c = fm_printf(d + 1, c, cols, " 1");
break;
case DATA_TYPE_BOOLEAN_VALUE:
(void) nvpair_value_boolean_value(nvp, &b);
c = fm_printf(d + 1, c, cols, b ? "1" : "0");
break;
case DATA_TYPE_BYTE:
(void) nvpair_value_byte(nvp, &i8);
c = fm_printf(d + 1, c, cols, "0x%x", i8);
break;
case DATA_TYPE_INT8:
(void) nvpair_value_int8(nvp, (void *)&i8);
c = fm_printf(d + 1, c, cols, "0x%x", i8);
break;
case DATA_TYPE_UINT8:
(void) nvpair_value_uint8(nvp, &i8);
c = fm_printf(d + 1, c, cols, "0x%x", i8);
break;
case DATA_TYPE_INT16:
(void) nvpair_value_int16(nvp, (void *)&i16);
c = fm_printf(d + 1, c, cols, "0x%x", i16);
break;
case DATA_TYPE_UINT16:
(void) nvpair_value_uint16(nvp, &i16);
c = fm_printf(d + 1, c, cols, "0x%x", i16);
break;
case DATA_TYPE_INT32:
(void) nvpair_value_int32(nvp, (void *)&i32);
c = fm_printf(d + 1, c, cols, "0x%x", i32);
break;
case DATA_TYPE_UINT32:
(void) nvpair_value_uint32(nvp, &i32);
c = fm_printf(d + 1, c, cols, "0x%x", i32);
break;
case DATA_TYPE_INT64:
(void) nvpair_value_int64(nvp, (void *)&i64);
c = fm_printf(d + 1, c, cols, "0x%llx",
(u_longlong_t)i64);
break;
case DATA_TYPE_UINT64:
(void) nvpair_value_uint64(nvp, &i64);
c = fm_printf(d + 1, c, cols, "0x%llx",
(u_longlong_t)i64);
break;
case DATA_TYPE_HRTIME:
(void) nvpair_value_hrtime(nvp, (void *)&i64);
c = fm_printf(d + 1, c, cols, "0x%llx",
(u_longlong_t)i64);
break;
case DATA_TYPE_STRING:
(void) nvpair_value_string(nvp, &str);
c = fm_printf(d + 1, c, cols, "\"%s\"",
str ? str : "<NULL>");
break;
case DATA_TYPE_NVLIST:
c = fm_printf(d + 1, c, cols, "[");
(void) nvpair_value_nvlist(nvp, &cnv);
c = fm_nvprintr(cnv, d + 1, c, cols);
c = fm_printf(d + 1, c, cols, " ]");
break;
case DATA_TYPE_NVLIST_ARRAY: {
nvlist_t **val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[");
(void) nvpair_value_nvlist_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++) {
c = fm_nvprintr(val[i], d + 1, c, cols);
}
c = fm_printf(d + 1, c, cols, " ]");
}
break;
case DATA_TYPE_INT8_ARRAY: {
int8_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_int8_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_UINT8_ARRAY: {
uint8_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_uint8_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_INT16_ARRAY: {
int16_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_int16_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_UINT16_ARRAY: {
uint16_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_uint16_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_INT32_ARRAY: {
int32_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_int32_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_UINT32_ARRAY: {
uint32_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_uint32_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_INT64_ARRAY: {
int64_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_int64_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_UINT64_ARRAY: {
uint64_t *val;
uint_t i, nelem;
c = fm_printf(d + 1, c, cols, "[ ");
(void) nvpair_value_uint64_array(nvp, &val, &nelem);
for (i = 0; i < nelem; i++)
c = fm_printf(d + 1, c, cols, "0x%llx ",
(u_longlong_t)val[i]);
c = fm_printf(d + 1, c, cols, "]");
break;
}
case DATA_TYPE_STRING_ARRAY:
case DATA_TYPE_BOOLEAN_ARRAY:
case DATA_TYPE_BYTE_ARRAY:
c = fm_printf(d + 1, c, cols, "[...]");
break;
case DATA_TYPE_UNKNOWN:
case DATA_TYPE_DONTCARE:
c = fm_printf(d + 1, c, cols, "<unknown>");
break;
}
}
return (c);
}
void
fm_nvprint(nvlist_t *nvl)
{
char *class;
int c = 0;
console_printf("\n");
if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0)
c = fm_printf(0, c, zfs_zevent_cols, "%s", class);
if (fm_nvprintr(nvl, 0, c, zfs_zevent_cols) != 0)
console_printf("\n");
console_printf("\n");
}
static zevent_t *
zfs_zevent_alloc(void)
{
zevent_t *ev;
ev = kmem_zalloc(sizeof (zevent_t), KM_SLEEP);
list_create(&ev->ev_ze_list, sizeof (zfs_zevent_t),
offsetof(zfs_zevent_t, ze_node));
list_link_init(&ev->ev_node);
return (ev);
}
static void
zfs_zevent_free(zevent_t *ev)
{
/* Run provided cleanup callback */
ev->ev_cb(ev->ev_nvl, ev->ev_detector);
list_destroy(&ev->ev_ze_list);
kmem_free(ev, sizeof (zevent_t));
}
static void
zfs_zevent_drain(zevent_t *ev)
{
zfs_zevent_t *ze;
ASSERT(MUTEX_HELD(&zevent_lock));
list_remove(&zevent_list, ev);
/* Remove references to this event in all private file data */
while ((ze = list_head(&ev->ev_ze_list)) != NULL) {
list_remove(&ev->ev_ze_list, ze);
ze->ze_zevent = NULL;
ze->ze_dropped++;
}
zfs_zevent_free(ev);
}
void
zfs_zevent_drain_all(int *count)
{
zevent_t *ev;
mutex_enter(&zevent_lock);
while ((ev = list_head(&zevent_list)) != NULL)
zfs_zevent_drain(ev);
*count = zevent_len_cur;
zevent_len_cur = 0;
mutex_exit(&zevent_lock);
}
/*
* New zevents are inserted at the head. If the maximum queue
* length is exceeded a zevent will be drained from the tail.
* As part of this any user space processes which currently have
* a reference to this zevent_t in their private data will have
* this reference set to NULL.
*/
static void
zfs_zevent_insert(zevent_t *ev)
{
ASSERT(MUTEX_HELD(&zevent_lock));
list_insert_head(&zevent_list, ev);
if (zevent_len_cur >= zfs_zevent_len_max)
zfs_zevent_drain(list_tail(&zevent_list));
else
zevent_len_cur++;
}
/*
* Post a zevent. The cb will be called when nvl and detector are no longer
* needed, i.e.:
* - An error happened and a zevent can't be posted. In this case, cb is called
* before zfs_zevent_post() returns.
* - The event is being drained and freed.
*/
int
zfs_zevent_post(nvlist_t *nvl, nvlist_t *detector, zevent_cb_t *cb)
{
inode_timespec_t tv;
int64_t tv_array[2];
uint64_t eid;
size_t nvl_size = 0;
zevent_t *ev;
int error;
ASSERT(cb != NULL);
gethrestime(&tv);
tv_array[0] = tv.tv_sec;
tv_array[1] = tv.tv_nsec;
error = nvlist_add_int64_array(nvl, FM_EREPORT_TIME, tv_array, 2);
if (error) {
atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
goto out;
}
eid = atomic_inc_64_nv(&zevent_eid);
error = nvlist_add_uint64(nvl, FM_EREPORT_EID, eid);
if (error) {
atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
goto out;
}
error = nvlist_size(nvl, &nvl_size, NV_ENCODE_NATIVE);
if (error) {
atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
goto out;
}
if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) {
atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
error = EOVERFLOW;
goto out;
}
if (zfs_zevent_console)
fm_nvprint(nvl);
ev = zfs_zevent_alloc();
if (ev == NULL) {
atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
error = ENOMEM;
goto out;
}
ev->ev_nvl = nvl;
ev->ev_detector = detector;
ev->ev_cb = cb;
ev->ev_eid = eid;
mutex_enter(&zevent_lock);
zfs_zevent_insert(ev);
cv_broadcast(&zevent_cv);
mutex_exit(&zevent_lock);
out:
if (error)
cb(nvl, detector);
return (error);
}
static int
zfs_zevent_minor_to_state(minor_t minor, zfs_zevent_t **ze)
{
*ze = zfsdev_get_state(minor, ZST_ZEVENT);
if (*ze == NULL)
return (SET_ERROR(EBADF));
return (0);
}
int
zfs_zevent_fd_hold(int fd, minor_t *minorp, zfs_zevent_t **ze)
{
file_t *fp;
int error;
fp = getf(fd);
if (fp == NULL)
return (SET_ERROR(EBADF));
error = zfsdev_getminor(fp->f_file, minorp);
if (error == 0)
error = zfs_zevent_minor_to_state(*minorp, ze);
if (error)
zfs_zevent_fd_rele(fd);
return (error);
}
void
zfs_zevent_fd_rele(int fd)
{
releasef(fd);
}
/*
* Get the next zevent in the stream and place a copy in 'event'. This
* may fail with ENOMEM if the encoded nvlist size exceeds the passed
* 'event_size'. In this case the stream pointer is not advanced and
* and 'event_size' is set to the minimum required buffer size.
*/
int
zfs_zevent_next(zfs_zevent_t *ze, nvlist_t **event, uint64_t *event_size,
uint64_t *dropped)
{
zevent_t *ev;
size_t size;
int error = 0;
mutex_enter(&zevent_lock);
if (ze->ze_zevent == NULL) {
/* New stream start at the beginning/tail */
ev = list_tail(&zevent_list);
if (ev == NULL) {
error = ENOENT;
goto out;
}
} else {
/*
* Existing stream continue with the next element and remove
* ourselves from the wait queue for the previous element
*/
ev = list_prev(&zevent_list, ze->ze_zevent);
if (ev == NULL) {
error = ENOENT;
goto out;
}
}
VERIFY(nvlist_size(ev->ev_nvl, &size, NV_ENCODE_NATIVE) == 0);
if (size > *event_size) {
*event_size = size;
error = ENOMEM;
goto out;
}
if (ze->ze_zevent)
list_remove(&ze->ze_zevent->ev_ze_list, ze);
ze->ze_zevent = ev;
list_insert_head(&ev->ev_ze_list, ze);
(void) nvlist_dup(ev->ev_nvl, event, KM_SLEEP);
*dropped = ze->ze_dropped;
#ifdef _KERNEL
/* Include events dropped due to rate limiting */
*dropped += ratelimit_dropped;
ratelimit_dropped = 0;
#endif
ze->ze_dropped = 0;
out:
mutex_exit(&zevent_lock);
return (error);
}
/*
* Wait in an interruptible state for any new events.
*/
int
zfs_zevent_wait(zfs_zevent_t *ze)
{
int error = EAGAIN;
mutex_enter(&zevent_lock);
zevent_waiters++;
while (error == EAGAIN) {
if (zevent_flags & ZEVENT_SHUTDOWN) {
error = SET_ERROR(ESHUTDOWN);
break;
}
error = cv_timedwait_sig(&zevent_cv, &zevent_lock,
ddi_get_lbolt() + MSEC_TO_TICK(10));
if (signal_pending(current)) {
error = SET_ERROR(EINTR);
break;
} else if (!list_is_empty(&zevent_list)) {
error = 0;
continue;
} else {
error = EAGAIN;
}
}
zevent_waiters--;
mutex_exit(&zevent_lock);
return (error);
}
/*
* The caller may seek to a specific EID by passing that EID. If the EID
* is still available in the posted list of events the cursor is positioned
* there. Otherwise ENOENT is returned and the cursor is not moved.
*
* There are two reserved EIDs which may be passed and will never fail.
* ZEVENT_SEEK_START positions the cursor at the start of the list, and
* ZEVENT_SEEK_END positions the cursor at the end of the list.
*/
int
zfs_zevent_seek(zfs_zevent_t *ze, uint64_t eid)
{
zevent_t *ev;
int error = 0;
mutex_enter(&zevent_lock);
if (eid == ZEVENT_SEEK_START) {
if (ze->ze_zevent)
list_remove(&ze->ze_zevent->ev_ze_list, ze);
ze->ze_zevent = NULL;
goto out;
}
if (eid == ZEVENT_SEEK_END) {
if (ze->ze_zevent)
list_remove(&ze->ze_zevent->ev_ze_list, ze);
ev = list_head(&zevent_list);
if (ev) {
ze->ze_zevent = ev;
list_insert_head(&ev->ev_ze_list, ze);
} else {
ze->ze_zevent = NULL;
}
goto out;
}
for (ev = list_tail(&zevent_list); ev != NULL;
ev = list_prev(&zevent_list, ev)) {
if (ev->ev_eid == eid) {
if (ze->ze_zevent)
list_remove(&ze->ze_zevent->ev_ze_list, ze);
ze->ze_zevent = ev;
list_insert_head(&ev->ev_ze_list, ze);
break;
}
}
if (ev == NULL)
error = ENOENT;
out:
mutex_exit(&zevent_lock);
return (error);
}
void
zfs_zevent_init(zfs_zevent_t **zep)
{
zfs_zevent_t *ze;
ze = *zep = kmem_zalloc(sizeof (zfs_zevent_t), KM_SLEEP);
list_link_init(&ze->ze_node);
}
void
zfs_zevent_destroy(zfs_zevent_t *ze)
{
mutex_enter(&zevent_lock);
if (ze->ze_zevent)
list_remove(&ze->ze_zevent->ev_ze_list, ze);
mutex_exit(&zevent_lock);
kmem_free(ze, sizeof (zfs_zevent_t));
}
#endif /* _KERNEL */
/*
* Wrapppers for FM nvlist allocators
*/
/* ARGSUSED */
static void *
i_fm_alloc(nv_alloc_t *nva, size_t size)
{
return (kmem_zalloc(size, KM_SLEEP));
}
/* ARGSUSED */
static void
i_fm_free(nv_alloc_t *nva, void *buf, size_t size)
{
kmem_free(buf, size);
}
const nv_alloc_ops_t fm_mem_alloc_ops = {
.nv_ao_init = NULL,
.nv_ao_fini = NULL,
.nv_ao_alloc = i_fm_alloc,
.nv_ao_free = i_fm_free,
.nv_ao_reset = NULL
};
/*
* Create and initialize a new nv_alloc_t for a fixed buffer, buf. A pointer
* to the newly allocated nv_alloc_t structure is returned upon success or NULL
* is returned to indicate that the nv_alloc structure could not be created.
*/
nv_alloc_t *
fm_nva_xcreate(char *buf, size_t bufsz)
{
nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) {
kmem_free(nvhdl, sizeof (nv_alloc_t));
return (NULL);
}
return (nvhdl);
}
/*
* Destroy a previously allocated nv_alloc structure. The fixed buffer
* associated with nva must be freed by the caller.
*/
void
fm_nva_xdestroy(nv_alloc_t *nva)
{
nv_alloc_fini(nva);
kmem_free(nva, sizeof (nv_alloc_t));
}
/*
* Create a new nv list. A pointer to a new nv list structure is returned
* upon success or NULL is returned to indicate that the structure could
* not be created. The newly created nv list is created and managed by the
* operations installed in nva. If nva is NULL, the default FMA nva
* operations are installed and used.
*
* When called from the kernel and nva == NULL, this function must be called
* from passive kernel context with no locks held that can prevent a
* sleeping memory allocation from occurring. Otherwise, this function may
* be called from other kernel contexts as long a valid nva created via
* fm_nva_create() is supplied.
*/
nvlist_t *
fm_nvlist_create(nv_alloc_t *nva)
{
int hdl_alloced = 0;
nvlist_t *nvl;
nv_alloc_t *nvhdl;
if (nva == NULL) {
nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) {
kmem_free(nvhdl, sizeof (nv_alloc_t));
return (NULL);
}
hdl_alloced = 1;
} else {
nvhdl = nva;
}
if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) {
if (hdl_alloced) {
nv_alloc_fini(nvhdl);
kmem_free(nvhdl, sizeof (nv_alloc_t));
}
return (NULL);
}
return (nvl);
}
/*
* Destroy a previously allocated nvlist structure. flag indicates whether
* or not the associated nva structure should be freed (FM_NVA_FREE) or
* retained (FM_NVA_RETAIN). Retaining the nv alloc structure allows
* it to be re-used for future nvlist creation operations.
*/
void
fm_nvlist_destroy(nvlist_t *nvl, int flag)
{
nv_alloc_t *nva = nvlist_lookup_nv_alloc(nvl);
nvlist_free(nvl);
if (nva != NULL) {
if (flag == FM_NVA_FREE)
fm_nva_xdestroy(nva);
}
}
int
i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap)
{
int nelem, ret = 0;
data_type_t type;
while (ret == 0 && name != NULL) {
type = va_arg(ap, data_type_t);
switch (type) {
case DATA_TYPE_BYTE:
ret = nvlist_add_byte(payload, name,
va_arg(ap, uint_t));
break;
case DATA_TYPE_BYTE_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_byte_array(payload, name,
va_arg(ap, uchar_t *), nelem);
break;
case DATA_TYPE_BOOLEAN_VALUE:
ret = nvlist_add_boolean_value(payload, name,
va_arg(ap, boolean_t));
break;
case DATA_TYPE_BOOLEAN_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_boolean_array(payload, name,
va_arg(ap, boolean_t *), nelem);
break;
case DATA_TYPE_INT8:
ret = nvlist_add_int8(payload, name,
va_arg(ap, int));
break;
case DATA_TYPE_INT8_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_int8_array(payload, name,
va_arg(ap, int8_t *), nelem);
break;
case DATA_TYPE_UINT8:
ret = nvlist_add_uint8(payload, name,
va_arg(ap, uint_t));
break;
case DATA_TYPE_UINT8_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_uint8_array(payload, name,
va_arg(ap, uint8_t *), nelem);
break;
case DATA_TYPE_INT16:
ret = nvlist_add_int16(payload, name,
va_arg(ap, int));
break;
case DATA_TYPE_INT16_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_int16_array(payload, name,
va_arg(ap, int16_t *), nelem);
break;
case DATA_TYPE_UINT16:
ret = nvlist_add_uint16(payload, name,
va_arg(ap, uint_t));
break;
case DATA_TYPE_UINT16_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_uint16_array(payload, name,
va_arg(ap, uint16_t *), nelem);
break;
case DATA_TYPE_INT32:
ret = nvlist_add_int32(payload, name,
va_arg(ap, int32_t));
break;
case DATA_TYPE_INT32_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_int32_array(payload, name,
va_arg(ap, int32_t *), nelem);
break;
case DATA_TYPE_UINT32:
ret = nvlist_add_uint32(payload, name,
va_arg(ap, uint32_t));
break;
case DATA_TYPE_UINT32_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_uint32_array(payload, name,
va_arg(ap, uint32_t *), nelem);
break;
case DATA_TYPE_INT64:
ret = nvlist_add_int64(payload, name,
va_arg(ap, int64_t));
break;
case DATA_TYPE_INT64_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_int64_array(payload, name,
va_arg(ap, int64_t *), nelem);
break;
case DATA_TYPE_UINT64:
ret = nvlist_add_uint64(payload, name,
va_arg(ap, uint64_t));
break;
case DATA_TYPE_UINT64_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_uint64_array(payload, name,
va_arg(ap, uint64_t *), nelem);
break;
case DATA_TYPE_STRING:
ret = nvlist_add_string(payload, name,
va_arg(ap, char *));
break;
case DATA_TYPE_STRING_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_string_array(payload, name,
va_arg(ap, char **), nelem);
break;
case DATA_TYPE_NVLIST:
ret = nvlist_add_nvlist(payload, name,
va_arg(ap, nvlist_t *));
break;
case DATA_TYPE_NVLIST_ARRAY:
nelem = va_arg(ap, int);
ret = nvlist_add_nvlist_array(payload, name,
va_arg(ap, nvlist_t **), nelem);
break;
default:
ret = EINVAL;
}
name = va_arg(ap, char *);
}
return (ret);
}
void
fm_payload_set(nvlist_t *payload, ...)
{
int ret;
const char *name;
va_list ap;
va_start(ap, payload);
name = va_arg(ap, char *);
ret = i_fm_payload_set(payload, name, ap);
va_end(ap);
if (ret)
atomic_inc_64(&erpt_kstat_data.payload_set_failed.value.ui64);
}
/*
* Set-up and validate the members of an ereport event according to:
*
* Member name Type Value
* ====================================================
* class string ereport
* version uint8_t 0
* ena uint64_t <ena>
* detector nvlist_t <detector>
* ereport-payload nvlist_t <var args>
*
* We don't actually add a 'version' member to the payload. Really,
* the version quoted to us by our caller is that of the category 1
* "ereport" event class (and we require FM_EREPORT_VERS0) but
* the payload version of the actual leaf class event under construction
* may be something else. Callers should supply a version in the varargs,
* or (better) we could take two version arguments - one for the
* ereport category 1 classification (expect FM_EREPORT_VERS0) and one
* for the leaf class.
*/
void
fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class,
uint64_t ena, const nvlist_t *detector, ...)
{
char ereport_class[FM_MAX_CLASS];
const char *name;
va_list ap;
int ret;
if (version != FM_EREPORT_VERS0) {
atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
return;
}
(void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s",
FM_EREPORT_CLASS, erpt_class);
if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) {
atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
return;
}
if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) {
atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
}
if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR,
(nvlist_t *)detector) != 0) {
atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
}
va_start(ap, detector);
name = va_arg(ap, const char *);
ret = i_fm_payload_set(ereport, name, ap);
va_end(ap);
if (ret)
atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
}
/*
* Set-up and validate the members of an hc fmri according to;
*
* Member name Type Value
* ===================================================
* version uint8_t 0
* auth nvlist_t <auth>
* hc-name string <name>
* hc-id string <id>
*
* Note that auth and hc-id are optional members.
*/
#define HC_MAXPAIRS 20
#define HC_MAXNAMELEN 50
static int
fm_fmri_hc_set_common(nvlist_t *fmri, int version, const nvlist_t *auth)
{
if (version != FM_HC_SCHEME_VERSION) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return (0);
}
if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0 ||
nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return (0);
}
if (auth != NULL && nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
(nvlist_t *)auth) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return (0);
}
return (1);
}
void
fm_fmri_hc_set(nvlist_t *fmri, int version, const nvlist_t *auth,
nvlist_t *snvl, int npairs, ...)
{
nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
nvlist_t *pairs[HC_MAXPAIRS];
va_list ap;
int i;
if (!fm_fmri_hc_set_common(fmri, version, auth))
return;
npairs = MIN(npairs, HC_MAXPAIRS);
va_start(ap, npairs);
for (i = 0; i < npairs; i++) {
const char *name = va_arg(ap, const char *);
uint32_t id = va_arg(ap, uint32_t);
char idstr[11];
(void) snprintf(idstr, sizeof (idstr), "%u", id);
pairs[i] = fm_nvlist_create(nva);
if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
}
}
va_end(ap);
if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs, npairs) != 0)
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
for (i = 0; i < npairs; i++)
fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
if (snvl != NULL) {
if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
}
}
}
void
fm_fmri_hc_create(nvlist_t *fmri, int version, const nvlist_t *auth,
nvlist_t *snvl, nvlist_t *bboard, int npairs, ...)
{
nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
nvlist_t *pairs[HC_MAXPAIRS];
nvlist_t **hcl;
uint_t n;
int i, j;
va_list ap;
char *hcname, *hcid;
if (!fm_fmri_hc_set_common(fmri, version, auth))
return;
/*
* copy the bboard nvpairs to the pairs array
*/
if (nvlist_lookup_nvlist_array(bboard, FM_FMRI_HC_LIST, &hcl, &n)
!= 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
for (i = 0; i < n; i++) {
if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_NAME,
&hcname) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_ID, &hcid) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
pairs[i] = fm_nvlist_create(nva);
if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, hcname) != 0 ||
nvlist_add_string(pairs[i], FM_FMRI_HC_ID, hcid) != 0) {
for (j = 0; j <= i; j++) {
if (pairs[j] != NULL)
fm_nvlist_destroy(pairs[j],
FM_NVA_RETAIN);
}
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
}
/*
* create the pairs from passed in pairs
*/
npairs = MIN(npairs, HC_MAXPAIRS);
va_start(ap, npairs);
for (i = n; i < npairs + n; i++) {
const char *name = va_arg(ap, const char *);
uint32_t id = va_arg(ap, uint32_t);
char idstr[11];
(void) snprintf(idstr, sizeof (idstr), "%u", id);
pairs[i] = fm_nvlist_create(nva);
if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
for (j = 0; j <= i; j++) {
if (pairs[j] != NULL)
fm_nvlist_destroy(pairs[j],
FM_NVA_RETAIN);
}
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
}
va_end(ap);
/*
* Create the fmri hc list
*/
if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs,
npairs + n) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
for (i = 0; i < npairs + n; i++) {
fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
}
if (snvl != NULL) {
if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
}
}
/*
* Set-up and validate the members of an dev fmri according to:
*
* Member name Type Value
* ====================================================
* version uint8_t 0
* auth nvlist_t <auth>
* devpath string <devpath>
* [devid] string <devid>
* [target-port-l0id] string <target-port-lun0-id>
*
* Note that auth and devid are optional members.
*/
void
fm_fmri_dev_set(nvlist_t *fmri_dev, int version, const nvlist_t *auth,
const char *devpath, const char *devid, const char *tpl0)
{
int err = 0;
if (version != DEV_SCHEME_VERSION0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
err |= nvlist_add_uint8(fmri_dev, FM_VERSION, version);
err |= nvlist_add_string(fmri_dev, FM_FMRI_SCHEME, FM_FMRI_SCHEME_DEV);
if (auth != NULL) {
err |= nvlist_add_nvlist(fmri_dev, FM_FMRI_AUTHORITY,
(nvlist_t *)auth);
}
err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_PATH, devpath);
if (devid != NULL)
err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_ID, devid);
if (tpl0 != NULL)
err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_TGTPTLUN0, tpl0);
if (err)
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
}
/*
* Set-up and validate the members of an cpu fmri according to:
*
* Member name Type Value
* ====================================================
* version uint8_t 0
* auth nvlist_t <auth>
* cpuid uint32_t <cpu_id>
* cpumask uint8_t <cpu_mask>
* serial uint64_t <serial_id>
*
* Note that auth, cpumask, serial are optional members.
*
*/
void
fm_fmri_cpu_set(nvlist_t *fmri_cpu, int version, const nvlist_t *auth,
uint32_t cpu_id, uint8_t *cpu_maskp, const char *serial_idp)
{
uint64_t *failedp = &erpt_kstat_data.fmri_set_failed.value.ui64;
if (version < CPU_SCHEME_VERSION1) {
atomic_inc_64(failedp);
return;
}
if (nvlist_add_uint8(fmri_cpu, FM_VERSION, version) != 0) {
atomic_inc_64(failedp);
return;
}
if (nvlist_add_string(fmri_cpu, FM_FMRI_SCHEME,
FM_FMRI_SCHEME_CPU) != 0) {
atomic_inc_64(failedp);
return;
}
if (auth != NULL && nvlist_add_nvlist(fmri_cpu, FM_FMRI_AUTHORITY,
(nvlist_t *)auth) != 0)
atomic_inc_64(failedp);
if (nvlist_add_uint32(fmri_cpu, FM_FMRI_CPU_ID, cpu_id) != 0)
atomic_inc_64(failedp);
if (cpu_maskp != NULL && nvlist_add_uint8(fmri_cpu, FM_FMRI_CPU_MASK,
*cpu_maskp) != 0)
atomic_inc_64(failedp);
if (serial_idp == NULL || nvlist_add_string(fmri_cpu,
FM_FMRI_CPU_SERIAL_ID, (char *)serial_idp) != 0)
atomic_inc_64(failedp);
}
/*
* Set-up and validate the members of a mem according to:
*
* Member name Type Value
* ====================================================
* version uint8_t 0
* auth nvlist_t <auth> [optional]
* unum string <unum>
* serial string <serial> [optional*]
* offset uint64_t <offset> [optional]
*
* * serial is required if offset is present
*/
void
fm_fmri_mem_set(nvlist_t *fmri, int version, const nvlist_t *auth,
const char *unum, const char *serial, uint64_t offset)
{
if (version != MEM_SCHEME_VERSION0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (!serial && (offset != (uint64_t)-1)) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_MEM) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (auth != NULL) {
if (nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
(nvlist_t *)auth) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
}
}
if (nvlist_add_string(fmri, FM_FMRI_MEM_UNUM, unum) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
}
if (serial != NULL) {
if (nvlist_add_string_array(fmri, FM_FMRI_MEM_SERIAL_ID,
(char **)&serial, 1) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
}
if (offset != (uint64_t)-1 && nvlist_add_uint64(fmri,
FM_FMRI_MEM_OFFSET, offset) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
}
}
}
void
fm_fmri_zfs_set(nvlist_t *fmri, int version, uint64_t pool_guid,
uint64_t vdev_guid)
{
if (version != ZFS_SCHEME_VERSION0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
return;
}
if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_POOL, pool_guid) != 0) {
atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
}
if (vdev_guid != 0) {
if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_VDEV, vdev_guid) != 0) {
atomic_inc_64(
&erpt_kstat_data.fmri_set_failed.value.ui64);
}
}
}
uint64_t
fm_ena_increment(uint64_t ena)
{
uint64_t new_ena;
switch (ENA_FORMAT(ena)) {
case FM_ENA_FMT1:
new_ena = ena + (1 << ENA_FMT1_GEN_SHFT);
break;
case FM_ENA_FMT2:
new_ena = ena + (1 << ENA_FMT2_GEN_SHFT);
break;
default:
new_ena = 0;
}
return (new_ena);
}
uint64_t
fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format)
{
uint64_t ena = 0;
switch (format) {
case FM_ENA_FMT1:
if (timestamp) {
ena = (uint64_t)((format & ENA_FORMAT_MASK) |
((cpuid << ENA_FMT1_CPUID_SHFT) &
ENA_FMT1_CPUID_MASK) |
((timestamp << ENA_FMT1_TIME_SHFT) &
ENA_FMT1_TIME_MASK));
} else {
ena = (uint64_t)((format & ENA_FORMAT_MASK) |
((cpuid << ENA_FMT1_CPUID_SHFT) &
ENA_FMT1_CPUID_MASK) |
((gethrtime() << ENA_FMT1_TIME_SHFT) &
ENA_FMT1_TIME_MASK));
}
break;
case FM_ENA_FMT2:
ena = (uint64_t)((format & ENA_FORMAT_MASK) |
((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK));
break;
default:
break;
}
return (ena);
}
uint64_t
fm_ena_generate(uint64_t timestamp, uchar_t format)
{
uint64_t ena;
kpreempt_disable();
ena = fm_ena_generate_cpu(timestamp, getcpuid(), format);
kpreempt_enable();
return (ena);
}
uint64_t
fm_ena_generation_get(uint64_t ena)
{
uint64_t gen;
switch (ENA_FORMAT(ena)) {
case FM_ENA_FMT1:
gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT;
break;
case FM_ENA_FMT2:
gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT;
break;
default:
gen = 0;
break;
}
return (gen);
}
uchar_t
fm_ena_format_get(uint64_t ena)
{
return (ENA_FORMAT(ena));
}
uint64_t
fm_ena_id_get(uint64_t ena)
{
uint64_t id;
switch (ENA_FORMAT(ena)) {
case FM_ENA_FMT1:
id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT;
break;
case FM_ENA_FMT2:
id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT;
break;
default:
id = 0;
}
return (id);
}
uint64_t
fm_ena_time_get(uint64_t ena)
{
uint64_t time;
switch (ENA_FORMAT(ena)) {
case FM_ENA_FMT1:
time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT;
break;
case FM_ENA_FMT2:
time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT;
break;
default:
time = 0;
}
return (time);
}
#ifdef _KERNEL
/*
* Helper function to increment ereport dropped count. Used by the event
* rate limiting code to give feedback to the user about how many events were
* rate limited by including them in the 'dropped' count.
*/
void
fm_erpt_dropped_increment(void)
{
atomic_inc_64(&ratelimit_dropped);
}
#endif
#ifdef _KERNEL
void
fm_init(void)
{
zevent_len_cur = 0;
zevent_flags = 0;
if (zfs_zevent_len_max == 0)
zfs_zevent_len_max = ERPT_MAX_ERRS * MAX(max_ncpus, 4);
/* Initialize zevent allocation and generation kstats */
fm_ksp = kstat_create("zfs", 0, "fm", "misc", KSTAT_TYPE_NAMED,
sizeof (struct erpt_kstat) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (fm_ksp != NULL) {
fm_ksp->ks_data = &erpt_kstat_data;
kstat_install(fm_ksp);
} else {
cmn_err(CE_NOTE, "failed to create fm/misc kstat\n");
}
mutex_init(&zevent_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zevent_list, sizeof (zevent_t),
offsetof(zevent_t, ev_node));
cv_init(&zevent_cv, NULL, CV_DEFAULT, NULL);
}
void
fm_fini(void)
{
int count;
zfs_zevent_drain_all(&count);
mutex_enter(&zevent_lock);
cv_broadcast(&zevent_cv);
zevent_flags |= ZEVENT_SHUTDOWN;
while (zevent_waiters > 0) {
mutex_exit(&zevent_lock);
schedule();
mutex_enter(&zevent_lock);
}
mutex_exit(&zevent_lock);
cv_destroy(&zevent_cv);
list_destroy(&zevent_list);
mutex_destroy(&zevent_lock);
if (fm_ksp != NULL) {
kstat_delete(fm_ksp);
fm_ksp = NULL;
}
}
module_param(zfs_zevent_len_max, int, 0644);
MODULE_PARM_DESC(zfs_zevent_len_max, "Max event queue length");
module_param(zfs_zevent_cols, int, 0644);
MODULE_PARM_DESC(zfs_zevent_cols, "Max event column width");
module_param(zfs_zevent_console, int, 0644);
MODULE_PARM_DESC(zfs_zevent_console, "Log events to the console");
#endif /* _KERNEL */