zfs-builds-mm/zfs-0.8.1/module/zfs/dsl_dir.c
2019-07-06 23:40:11 +02:00

2230 lines
61 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017 by Delphix. All rights reserved.
* Copyright (c) 2013 Martin Matuska. All rights reserved.
* Copyright (c) 2014 Joyent, Inc. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_deleg.h>
#include <sys/dmu_impl.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/metaslab.h>
#include <sys/zap.h>
#include <sys/zio.h>
#include <sys/arc.h>
#include <sys/sunddi.h>
#include <sys/zfeature.h>
#include <sys/policy.h>
#include <sys/zfs_znode.h>
#include <sys/zvol.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
/*
* Filesystem and Snapshot Limits
* ------------------------------
*
* These limits are used to restrict the number of filesystems and/or snapshots
* that can be created at a given level in the tree or below. A typical
* use-case is with a delegated dataset where the administrator wants to ensure
* that a user within the zone is not creating too many additional filesystems
* or snapshots, even though they're not exceeding their space quota.
*
* The filesystem and snapshot counts are stored as extensible properties. This
* capability is controlled by a feature flag and must be enabled to be used.
* Once enabled, the feature is not active until the first limit is set. At
* that point, future operations to create/destroy filesystems or snapshots
* will validate and update the counts.
*
* Because the count properties will not exist before the feature is active,
* the counts are updated when a limit is first set on an uninitialized
* dsl_dir node in the tree (The filesystem/snapshot count on a node includes
* all of the nested filesystems/snapshots. Thus, a new leaf node has a
* filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
* snapshot count properties on a node indicate uninitialized counts on that
* node.) When first setting a limit on an uninitialized node, the code starts
* at the filesystem with the new limit and descends into all sub-filesystems
* to add the count properties.
*
* In practice this is lightweight since a limit is typically set when the
* filesystem is created and thus has no children. Once valid, changing the
* limit value won't require a re-traversal since the counts are already valid.
* When recursively fixing the counts, if a node with a limit is encountered
* during the descent, the counts are known to be valid and there is no need to
* descend into that filesystem's children. The counts on filesystems above the
* one with the new limit will still be uninitialized, unless a limit is
* eventually set on one of those filesystems. The counts are always recursively
* updated when a limit is set on a dataset, unless there is already a limit.
* When a new limit value is set on a filesystem with an existing limit, it is
* possible for the new limit to be less than the current count at that level
* since a user who can change the limit is also allowed to exceed the limit.
*
* Once the feature is active, then whenever a filesystem or snapshot is
* created, the code recurses up the tree, validating the new count against the
* limit at each initialized level. In practice, most levels will not have a
* limit set. If there is a limit at any initialized level up the tree, the
* check must pass or the creation will fail. Likewise, when a filesystem or
* snapshot is destroyed, the counts are recursively adjusted all the way up
* the initizized nodes in the tree. Renaming a filesystem into different point
* in the tree will first validate, then update the counts on each branch up to
* the common ancestor. A receive will also validate the counts and then update
* them.
*
* An exception to the above behavior is that the limit is not enforced if the
* user has permission to modify the limit. This is primarily so that
* recursive snapshots in the global zone always work. We want to prevent a
* denial-of-service in which a lower level delegated dataset could max out its
* limit and thus block recursive snapshots from being taken in the global zone.
* Because of this, it is possible for the snapshot count to be over the limit
* and snapshots taken in the global zone could cause a lower level dataset to
* hit or exceed its limit. The administrator taking the global zone recursive
* snapshot should be aware of this side-effect and behave accordingly.
* For consistency, the filesystem limit is also not enforced if the user can
* modify the limit.
*
* The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
* and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
* dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
* dsl_dir_init_fs_ss_count().
*
* There is a special case when we receive a filesystem that already exists. In
* this case a temporary clone name of %X is created (see dmu_recv_begin). We
* never update the filesystem counts for temporary clones.
*
* Likewise, we do not update the snapshot counts for temporary snapshots,
* such as those created by zfs diff.
*/
extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
typedef struct ddulrt_arg {
dsl_dir_t *ddulrta_dd;
uint64_t ddlrta_txg;
} ddulrt_arg_t;
static void
dsl_dir_evict_async(void *dbu)
{
dsl_dir_t *dd = dbu;
int t;
ASSERTV(dsl_pool_t *dp = dd->dd_pool);
dd->dd_dbuf = NULL;
for (t = 0; t < TXG_SIZE; t++) {
ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
ASSERT(dd->dd_tempreserved[t] == 0);
ASSERT(dd->dd_space_towrite[t] == 0);
}
if (dd->dd_parent)
dsl_dir_async_rele(dd->dd_parent, dd);
spa_async_close(dd->dd_pool->dp_spa, dd);
dsl_prop_fini(dd);
mutex_destroy(&dd->dd_lock);
kmem_free(dd, sizeof (dsl_dir_t));
}
int
dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
const char *tail, void *tag, dsl_dir_t **ddp)
{
dmu_buf_t *dbuf;
dsl_dir_t *dd;
dmu_object_info_t doi;
int err;
ASSERT(dsl_pool_config_held(dp));
err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
if (err != 0)
return (err);
dd = dmu_buf_get_user(dbuf);
dmu_object_info_from_db(dbuf, &doi);
ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
if (dd == NULL) {
dsl_dir_t *winner;
dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
dd->dd_object = ddobj;
dd->dd_dbuf = dbuf;
dd->dd_pool = dp;
if (dsl_dir_is_zapified(dd) &&
zap_contains(dp->dp_meta_objset, ddobj,
DD_FIELD_CRYPTO_KEY_OBJ) == 0) {
VERIFY0(zap_lookup(dp->dp_meta_objset,
ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
sizeof (uint64_t), 1, &dd->dd_crypto_obj));
/* check for on-disk format errata */
if (dsl_dir_incompatible_encryption_version(dd)) {
dp->dp_spa->spa_errata =
ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
}
}
mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
dsl_prop_init(dd);
dsl_dir_snap_cmtime_update(dd);
if (dsl_dir_phys(dd)->dd_parent_obj) {
err = dsl_dir_hold_obj(dp,
dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
&dd->dd_parent);
if (err != 0)
goto errout;
if (tail) {
#ifdef ZFS_DEBUG
uint64_t foundobj;
err = zap_lookup(dp->dp_meta_objset,
dsl_dir_phys(dd->dd_parent)->
dd_child_dir_zapobj, tail,
sizeof (foundobj), 1, &foundobj);
ASSERT(err || foundobj == ddobj);
#endif
(void) strlcpy(dd->dd_myname, tail,
sizeof (dd->dd_myname));
} else {
err = zap_value_search(dp->dp_meta_objset,
dsl_dir_phys(dd->dd_parent)->
dd_child_dir_zapobj,
ddobj, 0, dd->dd_myname);
}
if (err != 0)
goto errout;
} else {
(void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
}
if (dsl_dir_is_clone(dd)) {
dmu_buf_t *origin_bonus;
dsl_dataset_phys_t *origin_phys;
/*
* We can't open the origin dataset, because
* that would require opening this dsl_dir.
* Just look at its phys directly instead.
*/
err = dmu_bonus_hold(dp->dp_meta_objset,
dsl_dir_phys(dd)->dd_origin_obj, FTAG,
&origin_bonus);
if (err != 0)
goto errout;
origin_phys = origin_bonus->db_data;
dd->dd_origin_txg =
origin_phys->ds_creation_txg;
dmu_buf_rele(origin_bonus, FTAG);
}
dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
&dd->dd_dbuf);
winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
if (winner != NULL) {
if (dd->dd_parent)
dsl_dir_rele(dd->dd_parent, dd);
dsl_prop_fini(dd);
mutex_destroy(&dd->dd_lock);
kmem_free(dd, sizeof (dsl_dir_t));
dd = winner;
} else {
spa_open_ref(dp->dp_spa, dd);
}
}
/*
* The dsl_dir_t has both open-to-close and instantiate-to-evict
* holds on the spa. We need the open-to-close holds because
* otherwise the spa_refcnt wouldn't change when we open a
* dir which the spa also has open, so we could incorrectly
* think it was OK to unload/export/destroy the pool. We need
* the instantiate-to-evict hold because the dsl_dir_t has a
* pointer to the dd_pool, which has a pointer to the spa_t.
*/
spa_open_ref(dp->dp_spa, tag);
ASSERT3P(dd->dd_pool, ==, dp);
ASSERT3U(dd->dd_object, ==, ddobj);
ASSERT3P(dd->dd_dbuf, ==, dbuf);
*ddp = dd;
return (0);
errout:
if (dd->dd_parent)
dsl_dir_rele(dd->dd_parent, dd);
dsl_prop_fini(dd);
mutex_destroy(&dd->dd_lock);
kmem_free(dd, sizeof (dsl_dir_t));
dmu_buf_rele(dbuf, tag);
return (err);
}
void
dsl_dir_rele(dsl_dir_t *dd, void *tag)
{
dprintf_dd(dd, "%s\n", "");
spa_close(dd->dd_pool->dp_spa, tag);
dmu_buf_rele(dd->dd_dbuf, tag);
}
/*
* Remove a reference to the given dsl dir that is being asynchronously
* released. Async releases occur from a taskq performing eviction of
* dsl datasets and dirs. This process is identical to a normal release
* with the exception of using the async API for releasing the reference on
* the spa.
*/
void
dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
{
dprintf_dd(dd, "%s\n", "");
spa_async_close(dd->dd_pool->dp_spa, tag);
dmu_buf_rele(dd->dd_dbuf, tag);
}
/* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
void
dsl_dir_name(dsl_dir_t *dd, char *buf)
{
if (dd->dd_parent) {
dsl_dir_name(dd->dd_parent, buf);
VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
ZFS_MAX_DATASET_NAME_LEN);
} else {
buf[0] = '\0';
}
if (!MUTEX_HELD(&dd->dd_lock)) {
/*
* recursive mutex so that we can use
* dprintf_dd() with dd_lock held
*/
mutex_enter(&dd->dd_lock);
VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
<, ZFS_MAX_DATASET_NAME_LEN);
mutex_exit(&dd->dd_lock);
} else {
VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
<, ZFS_MAX_DATASET_NAME_LEN);
}
}
/* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
int
dsl_dir_namelen(dsl_dir_t *dd)
{
int result = 0;
if (dd->dd_parent) {
/* parent's name + 1 for the "/" */
result = dsl_dir_namelen(dd->dd_parent) + 1;
}
if (!MUTEX_HELD(&dd->dd_lock)) {
/* see dsl_dir_name */
mutex_enter(&dd->dd_lock);
result += strlen(dd->dd_myname);
mutex_exit(&dd->dd_lock);
} else {
result += strlen(dd->dd_myname);
}
return (result);
}
static int
getcomponent(const char *path, char *component, const char **nextp)
{
char *p;
if ((path == NULL) || (path[0] == '\0'))
return (SET_ERROR(ENOENT));
/* This would be a good place to reserve some namespace... */
p = strpbrk(path, "/@");
if (p && (p[1] == '/' || p[1] == '@')) {
/* two separators in a row */
return (SET_ERROR(EINVAL));
}
if (p == NULL || p == path) {
/*
* if the first thing is an @ or /, it had better be an
* @ and it had better not have any more ats or slashes,
* and it had better have something after the @.
*/
if (p != NULL &&
(p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
return (SET_ERROR(EINVAL));
if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
(void) strcpy(component, path);
p = NULL;
} else if (p[0] == '/') {
if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
(void) strncpy(component, path, p - path);
component[p - path] = '\0';
p++;
} else if (p[0] == '@') {
/*
* if the next separator is an @, there better not be
* any more slashes.
*/
if (strchr(path, '/'))
return (SET_ERROR(EINVAL));
if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
(void) strncpy(component, path, p - path);
component[p - path] = '\0';
} else {
panic("invalid p=%p", (void *)p);
}
*nextp = p;
return (0);
}
/*
* Return the dsl_dir_t, and possibly the last component which couldn't
* be found in *tail. The name must be in the specified dsl_pool_t. This
* thread must hold the dp_config_rwlock for the pool. Returns NULL if the
* path is bogus, or if tail==NULL and we couldn't parse the whole name.
* (*tail)[0] == '@' means that the last component is a snapshot.
*/
int
dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
dsl_dir_t **ddp, const char **tailp)
{
char *buf;
const char *spaname, *next, *nextnext = NULL;
int err;
dsl_dir_t *dd;
uint64_t ddobj;
buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
err = getcomponent(name, buf, &next);
if (err != 0)
goto error;
/* Make sure the name is in the specified pool. */
spaname = spa_name(dp->dp_spa);
if (strcmp(buf, spaname) != 0) {
err = SET_ERROR(EXDEV);
goto error;
}
ASSERT(dsl_pool_config_held(dp));
err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
if (err != 0) {
goto error;
}
while (next != NULL) {
dsl_dir_t *child_dd;
err = getcomponent(next, buf, &nextnext);
if (err != 0)
break;
ASSERT(next[0] != '\0');
if (next[0] == '@')
break;
dprintf("looking up %s in obj%lld\n",
buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
err = zap_lookup(dp->dp_meta_objset,
dsl_dir_phys(dd)->dd_child_dir_zapobj,
buf, sizeof (ddobj), 1, &ddobj);
if (err != 0) {
if (err == ENOENT)
err = 0;
break;
}
err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
if (err != 0)
break;
dsl_dir_rele(dd, tag);
dd = child_dd;
next = nextnext;
}
if (err != 0) {
dsl_dir_rele(dd, tag);
goto error;
}
/*
* It's an error if there's more than one component left, or
* tailp==NULL and there's any component left.
*/
if (next != NULL &&
(tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
/* bad path name */
dsl_dir_rele(dd, tag);
dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
err = SET_ERROR(ENOENT);
}
if (tailp != NULL)
*tailp = next;
if (err == 0)
*ddp = dd;
error:
kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
return (err);
}
/*
* If the counts are already initialized for this filesystem and its
* descendants then do nothing, otherwise initialize the counts.
*
* The counts on this filesystem, and those below, may be uninitialized due to
* either the use of a pre-existing pool which did not support the
* filesystem/snapshot limit feature, or one in which the feature had not yet
* been enabled.
*
* Recursively descend the filesystem tree and update the filesystem/snapshot
* counts on each filesystem below, then update the cumulative count on the
* current filesystem. If the filesystem already has a count set on it,
* then we know that its counts, and the counts on the filesystems below it,
* are already correct, so we don't have to update this filesystem.
*/
static void
dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
{
uint64_t my_fs_cnt = 0;
uint64_t my_ss_cnt = 0;
dsl_pool_t *dp = dd->dd_pool;
objset_t *os = dp->dp_meta_objset;
zap_cursor_t *zc;
zap_attribute_t *za;
dsl_dataset_t *ds;
ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
ASSERT(dsl_pool_config_held(dp));
ASSERT(dmu_tx_is_syncing(tx));
dsl_dir_zapify(dd, tx);
/*
* If the filesystem count has already been initialized then we
* don't need to recurse down any further.
*/
if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
return;
zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
/* Iterate my child dirs */
for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
dsl_dir_t *chld_dd;
uint64_t count;
VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
&chld_dd));
/*
* Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
* temporary datasets.
*/
if (chld_dd->dd_myname[0] == '$' ||
chld_dd->dd_myname[0] == '%') {
dsl_dir_rele(chld_dd, FTAG);
continue;
}
my_fs_cnt++; /* count this child */
dsl_dir_init_fs_ss_count(chld_dd, tx);
VERIFY0(zap_lookup(os, chld_dd->dd_object,
DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
my_fs_cnt += count;
VERIFY0(zap_lookup(os, chld_dd->dd_object,
DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
my_ss_cnt += count;
dsl_dir_rele(chld_dd, FTAG);
}
zap_cursor_fini(zc);
/* Count my snapshots (we counted children's snapshots above) */
VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
zap_cursor_retrieve(zc, za) == 0;
zap_cursor_advance(zc)) {
/* Don't count temporary snapshots */
if (za->za_name[0] != '%')
my_ss_cnt++;
}
zap_cursor_fini(zc);
dsl_dataset_rele(ds, FTAG);
kmem_free(zc, sizeof (zap_cursor_t));
kmem_free(za, sizeof (zap_attribute_t));
/* we're in a sync task, update counts */
dmu_buf_will_dirty(dd->dd_dbuf, tx);
VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
}
static int
dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
{
char *ddname = (char *)arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dataset_t *ds;
dsl_dir_t *dd;
int error;
error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
if (error != 0)
return (error);
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
dsl_dataset_rele(ds, FTAG);
return (SET_ERROR(ENOTSUP));
}
dd = ds->ds_dir;
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
dsl_dir_is_zapified(dd) &&
zap_contains(dp->dp_meta_objset, dd->dd_object,
DD_FIELD_FILESYSTEM_COUNT) == 0) {
dsl_dataset_rele(ds, FTAG);
return (SET_ERROR(EALREADY));
}
dsl_dataset_rele(ds, FTAG);
return (0);
}
static void
dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
{
char *ddname = (char *)arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dataset_t *ds;
spa_t *spa;
VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
spa = dsl_dataset_get_spa(ds);
if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
/*
* Since the feature was not active and we're now setting a
* limit, increment the feature-active counter so that the
* feature becomes active for the first time.
*
* We are already in a sync task so we can update the MOS.
*/
spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
}
/*
* Since we are now setting a non-UINT64_MAX limit on the filesystem,
* we need to ensure the counts are correct. Descend down the tree from
* this point and update all of the counts to be accurate.
*/
dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
dsl_dataset_rele(ds, FTAG);
}
/*
* Make sure the feature is enabled and activate it if necessary.
* Since we're setting a limit, ensure the on-disk counts are valid.
* This is only called by the ioctl path when setting a limit value.
*
* We do not need to validate the new limit, since users who can change the
* limit are also allowed to exceed the limit.
*/
int
dsl_dir_activate_fs_ss_limit(const char *ddname)
{
int error;
error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
ZFS_SPACE_CHECK_RESERVED);
if (error == EALREADY)
error = 0;
return (error);
}
/*
* Used to determine if the filesystem_limit or snapshot_limit should be
* enforced. We allow the limit to be exceeded if the user has permission to
* write the property value. We pass in the creds that we got in the open
* context since we will always be the GZ root in syncing context. We also have
* to handle the case where we are allowed to change the limit on the current
* dataset, but there may be another limit in the tree above.
*
* We can never modify these two properties within a non-global zone. In
* addition, the other checks are modeled on zfs_secpolicy_write_perms. We
* can't use that function since we are already holding the dp_config_rwlock.
* In addition, we already have the dd and dealing with snapshots is simplified
* in this code.
*/
typedef enum {
ENFORCE_ALWAYS,
ENFORCE_NEVER,
ENFORCE_ABOVE
} enforce_res_t;
static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
{
enforce_res_t enforce = ENFORCE_ALWAYS;
uint64_t obj;
dsl_dataset_t *ds;
uint64_t zoned;
ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
prop == ZFS_PROP_SNAPSHOT_LIMIT);
#ifdef _KERNEL
if (crgetzoneid(cr) != GLOBAL_ZONEID)
return (ENFORCE_ALWAYS);
if (secpolicy_zfs(cr) == 0)
return (ENFORCE_NEVER);
#endif
if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
return (ENFORCE_ALWAYS);
ASSERT(dsl_pool_config_held(dd->dd_pool));
if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
return (ENFORCE_ALWAYS);
if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
/* Only root can access zoned fs's from the GZ */
enforce = ENFORCE_ALWAYS;
} else {
if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
enforce = ENFORCE_ABOVE;
}
dsl_dataset_rele(ds, FTAG);
return (enforce);
}
static void
dsl_dir_update_last_remap_txg_sync(void *varg, dmu_tx_t *tx)
{
ddulrt_arg_t *arg = varg;
uint64_t last_remap_txg;
dsl_dir_t *dd = arg->ddulrta_dd;
objset_t *mos = dd->dd_pool->dp_meta_objset;
dsl_dir_zapify(dd, tx);
if (zap_lookup(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
sizeof (last_remap_txg), 1, &last_remap_txg) != 0 ||
last_remap_txg < arg->ddlrta_txg) {
VERIFY0(zap_update(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
sizeof (arg->ddlrta_txg), 1, &arg->ddlrta_txg, tx));
}
}
int
dsl_dir_update_last_remap_txg(dsl_dir_t *dd, uint64_t txg)
{
ddulrt_arg_t arg;
arg.ddulrta_dd = dd;
arg.ddlrta_txg = txg;
return (dsl_sync_task(spa_name(dd->dd_pool->dp_spa),
NULL, dsl_dir_update_last_remap_txg_sync, &arg,
1, ZFS_SPACE_CHECK_RESERVED));
}
/*
* Check if adding additional child filesystem(s) would exceed any filesystem
* limits or adding additional snapshot(s) would exceed any snapshot limits.
* The prop argument indicates which limit to check.
*
* Note that all filesystem limits up to the root (or the highest
* initialized) filesystem or the given ancestor must be satisfied.
*/
int
dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
dsl_dir_t *ancestor, cred_t *cr)
{
objset_t *os = dd->dd_pool->dp_meta_objset;
uint64_t limit, count;
char *count_prop;
enforce_res_t enforce;
int err = 0;
ASSERT(dsl_pool_config_held(dd->dd_pool));
ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
prop == ZFS_PROP_SNAPSHOT_LIMIT);
/*
* If we're allowed to change the limit, don't enforce the limit
* e.g. this can happen if a snapshot is taken by an administrative
* user in the global zone (i.e. a recursive snapshot by root).
* However, we must handle the case of delegated permissions where we
* are allowed to change the limit on the current dataset, but there
* is another limit in the tree above.
*/
enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
if (enforce == ENFORCE_NEVER)
return (0);
/*
* e.g. if renaming a dataset with no snapshots, count adjustment
* is 0.
*/
if (delta == 0)
return (0);
if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
/*
* We don't enforce the limit for temporary snapshots. This is
* indicated by a NULL cred_t argument.
*/
if (cr == NULL)
return (0);
count_prop = DD_FIELD_SNAPSHOT_COUNT;
} else {
count_prop = DD_FIELD_FILESYSTEM_COUNT;
}
/*
* If an ancestor has been provided, stop checking the limit once we
* hit that dir. We need this during rename so that we don't overcount
* the check once we recurse up to the common ancestor.
*/
if (ancestor == dd)
return (0);
/*
* If we hit an uninitialized node while recursing up the tree, we can
* stop since we know there is no limit here (or above). The counts are
* not valid on this node and we know we won't touch this node's counts.
*/
if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
count_prop, sizeof (count), 1, &count) == ENOENT)
return (0);
err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
B_FALSE);
if (err != 0)
return (err);
/* Is there a limit which we've hit? */
if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
return (SET_ERROR(EDQUOT));
if (dd->dd_parent != NULL)
err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
ancestor, cr);
return (err);
}
/*
* Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
* parents. When a new filesystem/snapshot is created, increment the count on
* all parents, and when a filesystem/snapshot is destroyed, decrement the
* count.
*/
void
dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
dmu_tx_t *tx)
{
int err;
objset_t *os = dd->dd_pool->dp_meta_objset;
uint64_t count;
ASSERT(dsl_pool_config_held(dd->dd_pool));
ASSERT(dmu_tx_is_syncing(tx));
ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
/*
* When we receive an incremental stream into a filesystem that already
* exists, a temporary clone is created. We don't count this temporary
* clone, whose name begins with a '%'. We also ignore hidden ($FREE,
* $MOS & $ORIGIN) objsets.
*/
if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
return;
/*
* e.g. if renaming a dataset with no snapshots, count adjustment is 0
*/
if (delta == 0)
return;
/*
* If we hit an uninitialized node while recursing up the tree, we can
* stop since we know the counts are not valid on this node and we
* know we shouldn't touch this node's counts. An uninitialized count
* on the node indicates that either the feature has not yet been
* activated or there are no limits on this part of the tree.
*/
if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
prop, sizeof (count), 1, &count)) == ENOENT)
return;
VERIFY0(err);
count += delta;
/* Use a signed verify to make sure we're not neg. */
VERIFY3S(count, >=, 0);
VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
tx));
/* Roll up this additional count into our ancestors */
if (dd->dd_parent != NULL)
dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
}
uint64_t
dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
dmu_tx_t *tx)
{
objset_t *mos = dp->dp_meta_objset;
uint64_t ddobj;
dsl_dir_phys_t *ddphys;
dmu_buf_t *dbuf;
ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
if (pds) {
VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
name, sizeof (uint64_t), 1, &ddobj, tx));
} else {
/* it's the root dir */
VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
}
VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
dmu_buf_will_dirty(dbuf, tx);
ddphys = dbuf->db_data;
ddphys->dd_creation_time = gethrestime_sec();
if (pds) {
ddphys->dd_parent_obj = pds->dd_object;
/* update the filesystem counts */
dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
}
ddphys->dd_props_zapobj = zap_create(mos,
DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
ddphys->dd_child_dir_zapobj = zap_create(mos,
DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
dmu_buf_rele(dbuf, FTAG);
return (ddobj);
}
boolean_t
dsl_dir_is_clone(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_origin_obj &&
(dd->dd_pool->dp_origin_snap == NULL ||
dsl_dir_phys(dd)->dd_origin_obj !=
dd->dd_pool->dp_origin_snap->ds_object));
}
uint64_t
dsl_dir_get_used(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_used_bytes);
}
uint64_t
dsl_dir_get_compressed(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_compressed_bytes);
}
uint64_t
dsl_dir_get_quota(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_quota);
}
uint64_t
dsl_dir_get_reservation(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_reserved);
}
uint64_t
dsl_dir_get_compressratio(dsl_dir_t *dd)
{
/* a fixed point number, 100x the ratio */
return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
(dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
dsl_dir_phys(dd)->dd_compressed_bytes));
}
uint64_t
dsl_dir_get_logicalused(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
}
uint64_t
dsl_dir_get_usedsnap(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
}
uint64_t
dsl_dir_get_usedds(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
}
uint64_t
dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
}
uint64_t
dsl_dir_get_usedchild(dsl_dir_t *dd)
{
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
}
void
dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
{
dsl_dataset_t *ds;
VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
dsl_dataset_name(ds, buf);
dsl_dataset_rele(ds, FTAG);
}
int
dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
{
if (dsl_dir_is_zapified(dd)) {
objset_t *os = dd->dd_pool->dp_meta_objset;
return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
sizeof (*count), 1, count));
} else {
return (ENOENT);
}
}
int
dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
{
if (dsl_dir_is_zapified(dd)) {
objset_t *os = dd->dd_pool->dp_meta_objset;
return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
sizeof (*count), 1, count));
} else {
return (ENOENT);
}
}
int
dsl_dir_get_remaptxg(dsl_dir_t *dd, uint64_t *count)
{
if (dsl_dir_is_zapified(dd)) {
objset_t *os = dd->dd_pool->dp_meta_objset;
return (zap_lookup(os, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
sizeof (*count), 1, count));
} else {
return (ENOENT);
}
}
void
dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
{
mutex_enter(&dd->dd_lock);
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
dsl_dir_get_quota(dd));
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
dsl_dir_get_reservation(dd));
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
dsl_dir_get_logicalused(dd));
if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
dsl_dir_get_usedsnap(dd));
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
dsl_dir_get_usedds(dd));
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
dsl_dir_get_usedrefreserv(dd));
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
dsl_dir_get_usedchild(dd));
}
mutex_exit(&dd->dd_lock);
uint64_t count;
if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
count);
}
if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
count);
}
if (dsl_dir_get_remaptxg(dd, &count) == 0) {
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REMAPTXG,
count);
}
if (dsl_dir_is_clone(dd)) {
char buf[ZFS_MAX_DATASET_NAME_LEN];
dsl_dir_get_origin(dd, buf);
dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
}
}
void
dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
{
dsl_pool_t *dp = dd->dd_pool;
ASSERT(dsl_dir_phys(dd));
if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
/* up the hold count until we can be written out */
dmu_buf_add_ref(dd->dd_dbuf, dd);
}
}
static int64_t
parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
{
uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
uint64_t new_accounted =
MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
return (new_accounted - old_accounted);
}
void
dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
{
ASSERT(dmu_tx_is_syncing(tx));
mutex_enter(&dd->dd_lock);
ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
mutex_exit(&dd->dd_lock);
/* release the hold from dsl_dir_dirty */
dmu_buf_rele(dd->dd_dbuf, dd);
}
static uint64_t
dsl_dir_space_towrite(dsl_dir_t *dd)
{
uint64_t space = 0;
ASSERT(MUTEX_HELD(&dd->dd_lock));
for (int i = 0; i < TXG_SIZE; i++) {
space += dd->dd_space_towrite[i & TXG_MASK];
ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
}
return (space);
}
/*
* How much space would dd have available if ancestor had delta applied
* to it? If ondiskonly is set, we're only interested in what's
* on-disk, not estimated pending changes.
*/
uint64_t
dsl_dir_space_available(dsl_dir_t *dd,
dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
{
uint64_t parentspace, myspace, quota, used;
/*
* If there are no restrictions otherwise, assume we have
* unlimited space available.
*/
quota = UINT64_MAX;
parentspace = UINT64_MAX;
if (dd->dd_parent != NULL) {
parentspace = dsl_dir_space_available(dd->dd_parent,
ancestor, delta, ondiskonly);
}
mutex_enter(&dd->dd_lock);
if (dsl_dir_phys(dd)->dd_quota != 0)
quota = dsl_dir_phys(dd)->dd_quota;
used = dsl_dir_phys(dd)->dd_used_bytes;
if (!ondiskonly)
used += dsl_dir_space_towrite(dd);
if (dd->dd_parent == NULL) {
uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
ZFS_SPACE_CHECK_NORMAL);
quota = MIN(quota, poolsize);
}
if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
/*
* We have some space reserved, in addition to what our
* parent gave us.
*/
parentspace += dsl_dir_phys(dd)->dd_reserved - used;
}
if (dd == ancestor) {
ASSERT(delta <= 0);
ASSERT(used >= -delta);
used += delta;
if (parentspace != UINT64_MAX)
parentspace -= delta;
}
if (used > quota) {
/* over quota */
myspace = 0;
} else {
/*
* the lesser of the space provided by our parent and
* the space left in our quota
*/
myspace = MIN(parentspace, quota - used);
}
mutex_exit(&dd->dd_lock);
return (myspace);
}
struct tempreserve {
list_node_t tr_node;
dsl_dir_t *tr_ds;
uint64_t tr_size;
};
static int
dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
boolean_t ignorequota, list_t *tr_list,
dmu_tx_t *tx, boolean_t first)
{
uint64_t txg;
uint64_t quota;
struct tempreserve *tr;
int retval;
uint64_t ref_rsrv;
top_of_function:
txg = tx->tx_txg;
retval = EDQUOT;
ref_rsrv = 0;
ASSERT3U(txg, !=, 0);
ASSERT3S(asize, >, 0);
mutex_enter(&dd->dd_lock);
/*
* Check against the dsl_dir's quota. We don't add in the delta
* when checking for over-quota because they get one free hit.
*/
uint64_t est_inflight = dsl_dir_space_towrite(dd);
for (int i = 0; i < TXG_SIZE; i++)
est_inflight += dd->dd_tempreserved[i];
uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
/*
* On the first iteration, fetch the dataset's used-on-disk and
* refreservation values. Also, if checkrefquota is set, test if
* allocating this space would exceed the dataset's refquota.
*/
if (first && tx->tx_objset) {
int error;
dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
error = dsl_dataset_check_quota(ds, !netfree,
asize, est_inflight, &used_on_disk, &ref_rsrv);
if (error != 0) {
mutex_exit(&dd->dd_lock);
DMU_TX_STAT_BUMP(dmu_tx_quota);
return (error);
}
}
/*
* If this transaction will result in a net free of space,
* we want to let it through.
*/
if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
quota = UINT64_MAX;
else
quota = dsl_dir_phys(dd)->dd_quota;
/*
* Adjust the quota against the actual pool size at the root
* minus any outstanding deferred frees.
* To ensure that it's possible to remove files from a full
* pool without inducing transient overcommits, we throttle
* netfree transactions against a quota that is slightly larger,
* but still within the pool's allocation slop. In cases where
* we're very close to full, this will allow a steady trickle of
* removes to get through.
*/
uint64_t deferred = 0;
if (dd->dd_parent == NULL) {
uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
(netfree) ?
ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
if (avail < quota) {
quota = avail;
retval = ENOSPC;
}
}
/*
* If they are requesting more space, and our current estimate
* is over quota, they get to try again unless the actual
* on-disk is over quota and there are no pending changes (which
* may free up space for us).
*/
if (used_on_disk + est_inflight >= quota) {
if (est_inflight > 0 || used_on_disk < quota ||
(retval == ENOSPC && used_on_disk < quota + deferred))
retval = ERESTART;
dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
"quota=%lluK tr=%lluK err=%d\n",
used_on_disk>>10, est_inflight>>10,
quota>>10, asize>>10, retval);
mutex_exit(&dd->dd_lock);
DMU_TX_STAT_BUMP(dmu_tx_quota);
return (SET_ERROR(retval));
}
/* We need to up our estimated delta before dropping dd_lock */
dd->dd_tempreserved[txg & TXG_MASK] += asize;
uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
asize - ref_rsrv);
mutex_exit(&dd->dd_lock);
tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
tr->tr_ds = dd;
tr->tr_size = asize;
list_insert_tail(tr_list, tr);
/* see if it's OK with our parent */
if (dd->dd_parent != NULL && parent_rsrv != 0) {
/*
* Recurse on our parent without recursion. This has been
* observed to be potentially large stack usage even within
* the test suite. Largest seen stack was 7632 bytes on linux.
*/
dd = dd->dd_parent;
asize = parent_rsrv;
ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
first = B_FALSE;
goto top_of_function;
} else {
return (0);
}
}
/*
* Reserve space in this dsl_dir, to be used in this tx's txg.
* After the space has been dirtied (and dsl_dir_willuse_space()
* has been called), the reservation should be canceled, using
* dsl_dir_tempreserve_clear().
*/
int
dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
{
int err;
list_t *tr_list;
if (asize == 0) {
*tr_cookiep = NULL;
return (0);
}
tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
list_create(tr_list, sizeof (struct tempreserve),
offsetof(struct tempreserve, tr_node));
ASSERT3S(asize, >, 0);
err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
if (err == 0) {
struct tempreserve *tr;
tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
tr->tr_size = lsize;
list_insert_tail(tr_list, tr);
} else {
if (err == EAGAIN) {
/*
* If arc_memory_throttle() detected that pageout
* is running and we are low on memory, we delay new
* non-pageout transactions to give pageout an
* advantage.
*
* It is unfortunate to be delaying while the caller's
* locks are held.
*/
txg_delay(dd->dd_pool, tx->tx_txg,
MSEC2NSEC(10), MSEC2NSEC(10));
err = SET_ERROR(ERESTART);
}
}
if (err == 0) {
err = dsl_dir_tempreserve_impl(dd, asize, netfree,
B_FALSE, tr_list, tx, B_TRUE);
}
if (err != 0)
dsl_dir_tempreserve_clear(tr_list, tx);
else
*tr_cookiep = tr_list;
return (err);
}
/*
* Clear a temporary reservation that we previously made with
* dsl_dir_tempreserve_space().
*/
void
dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
{
int txgidx = tx->tx_txg & TXG_MASK;
list_t *tr_list = tr_cookie;
struct tempreserve *tr;
ASSERT3U(tx->tx_txg, !=, 0);
if (tr_cookie == NULL)
return;
while ((tr = list_head(tr_list)) != NULL) {
if (tr->tr_ds) {
mutex_enter(&tr->tr_ds->dd_lock);
ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
tr->tr_size);
tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
mutex_exit(&tr->tr_ds->dd_lock);
} else {
arc_tempreserve_clear(tr->tr_size);
}
list_remove(tr_list, tr);
kmem_free(tr, sizeof (struct tempreserve));
}
kmem_free(tr_list, sizeof (list_t));
}
/*
* This should be called from open context when we think we're going to write
* or free space, for example when dirtying data. Be conservative; it's okay
* to write less space or free more, but we don't want to write more or free
* less than the amount specified.
*
* NOTE: The behavior of this function is identical to the Illumos / FreeBSD
* version however it has been adjusted to use an iterative rather then
* recursive algorithm to minimize stack usage.
*/
void
dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
{
int64_t parent_space;
uint64_t est_used;
do {
mutex_enter(&dd->dd_lock);
if (space > 0)
dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
est_used = dsl_dir_space_towrite(dd) +
dsl_dir_phys(dd)->dd_used_bytes;
parent_space = parent_delta(dd, est_used, space);
mutex_exit(&dd->dd_lock);
/* Make sure that we clean up dd_space_to* */
dsl_dir_dirty(dd, tx);
dd = dd->dd_parent;
space = parent_space;
} while (space && dd);
}
/* call from syncing context when we actually write/free space for this dd */
void
dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
{
int64_t accounted_delta;
/*
* dsl_dataset_set_refreservation_sync_impl() calls this with
* dd_lock held, so that it can atomically update
* ds->ds_reserved and the dsl_dir accounting, so that
* dsl_dataset_check_quota() can see dataset and dir accounting
* consistently.
*/
boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
ASSERT(dmu_tx_is_syncing(tx));
ASSERT(type < DD_USED_NUM);
dmu_buf_will_dirty(dd->dd_dbuf, tx);
if (needlock)
mutex_enter(&dd->dd_lock);
accounted_delta =
parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
ASSERT(compressed >= 0 ||
dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
ASSERT(uncompressed >= 0 ||
dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
dsl_dir_phys(dd)->dd_used_bytes += used;
dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
ASSERT(used > 0 ||
dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
#ifdef DEBUG
{
dd_used_t t;
uint64_t u = 0;
for (t = 0; t < DD_USED_NUM; t++)
u += dsl_dir_phys(dd)->dd_used_breakdown[t];
ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
}
#endif
}
if (needlock)
mutex_exit(&dd->dd_lock);
if (dd->dd_parent != NULL) {
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
accounted_delta, compressed, uncompressed, tx);
dsl_dir_transfer_space(dd->dd_parent,
used - accounted_delta,
DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
}
}
void
dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
{
ASSERT(dmu_tx_is_syncing(tx));
ASSERT(oldtype < DD_USED_NUM);
ASSERT(newtype < DD_USED_NUM);
if (delta == 0 ||
!(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
return;
dmu_buf_will_dirty(dd->dd_dbuf, tx);
mutex_enter(&dd->dd_lock);
ASSERT(delta > 0 ?
dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
mutex_exit(&dd->dd_lock);
}
typedef struct dsl_dir_set_qr_arg {
const char *ddsqra_name;
zprop_source_t ddsqra_source;
uint64_t ddsqra_value;
} dsl_dir_set_qr_arg_t;
static int
dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
{
dsl_dir_set_qr_arg_t *ddsqra = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dataset_t *ds;
int error;
uint64_t towrite, newval;
error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
if (error != 0)
return (error);
error = dsl_prop_predict(ds->ds_dir, "quota",
ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
if (newval == 0) {
dsl_dataset_rele(ds, FTAG);
return (0);
}
mutex_enter(&ds->ds_dir->dd_lock);
/*
* If we are doing the preliminary check in open context, and
* there are pending changes, then don't fail it, since the
* pending changes could under-estimate the amount of space to be
* freed up.
*/
towrite = dsl_dir_space_towrite(ds->ds_dir);
if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
(newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
error = SET_ERROR(ENOSPC);
}
mutex_exit(&ds->ds_dir->dd_lock);
dsl_dataset_rele(ds, FTAG);
return (error);
}
static void
dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
{
dsl_dir_set_qr_arg_t *ddsqra = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dataset_t *ds;
uint64_t newval;
VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
&ddsqra->ddsqra_value, tx);
VERIFY0(dsl_prop_get_int_ds(ds,
zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
} else {
newval = ddsqra->ddsqra_value;
spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
}
dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
mutex_enter(&ds->ds_dir->dd_lock);
dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
mutex_exit(&ds->ds_dir->dd_lock);
dsl_dataset_rele(ds, FTAG);
}
int
dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
{
dsl_dir_set_qr_arg_t ddsqra;
ddsqra.ddsqra_name = ddname;
ddsqra.ddsqra_source = source;
ddsqra.ddsqra_value = quota;
return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
dsl_dir_set_quota_sync, &ddsqra, 0,
ZFS_SPACE_CHECK_EXTRA_RESERVED));
}
int
dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
{
dsl_dir_set_qr_arg_t *ddsqra = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dataset_t *ds;
dsl_dir_t *dd;
uint64_t newval, used, avail;
int error;
error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
if (error != 0)
return (error);
dd = ds->ds_dir;
/*
* If we are doing the preliminary check in open context, the
* space estimates may be inaccurate.
*/
if (!dmu_tx_is_syncing(tx)) {
dsl_dataset_rele(ds, FTAG);
return (0);
}
error = dsl_prop_predict(ds->ds_dir,
zfs_prop_to_name(ZFS_PROP_RESERVATION),
ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
mutex_enter(&dd->dd_lock);
used = dsl_dir_phys(dd)->dd_used_bytes;
mutex_exit(&dd->dd_lock);
if (dd->dd_parent) {
avail = dsl_dir_space_available(dd->dd_parent,
NULL, 0, FALSE);
} else {
avail = dsl_pool_adjustedsize(dd->dd_pool,
ZFS_SPACE_CHECK_NORMAL) - used;
}
if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
uint64_t delta = MAX(used, newval) -
MAX(used, dsl_dir_phys(dd)->dd_reserved);
if (delta > avail ||
(dsl_dir_phys(dd)->dd_quota > 0 &&
newval > dsl_dir_phys(dd)->dd_quota))
error = SET_ERROR(ENOSPC);
}
dsl_dataset_rele(ds, FTAG);
return (error);
}
void
dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
{
uint64_t used;
int64_t delta;
dmu_buf_will_dirty(dd->dd_dbuf, tx);
mutex_enter(&dd->dd_lock);
used = dsl_dir_phys(dd)->dd_used_bytes;
delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
dsl_dir_phys(dd)->dd_reserved = value;
if (dd->dd_parent != NULL) {
/* Roll up this additional usage into our ancestors */
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
delta, 0, 0, tx);
}
mutex_exit(&dd->dd_lock);
}
static void
dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
{
dsl_dir_set_qr_arg_t *ddsqra = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dataset_t *ds;
uint64_t newval;
VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
dsl_prop_set_sync_impl(ds,
zfs_prop_to_name(ZFS_PROP_RESERVATION),
ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
&ddsqra->ddsqra_value, tx);
VERIFY0(dsl_prop_get_int_ds(ds,
zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
} else {
newval = ddsqra->ddsqra_value;
spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
zfs_prop_to_name(ZFS_PROP_RESERVATION),
(longlong_t)newval);
}
dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
dsl_dataset_rele(ds, FTAG);
}
int
dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
uint64_t reservation)
{
dsl_dir_set_qr_arg_t ddsqra;
ddsqra.ddsqra_name = ddname;
ddsqra.ddsqra_source = source;
ddsqra.ddsqra_value = reservation;
return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
dsl_dir_set_reservation_sync, &ddsqra, 0,
ZFS_SPACE_CHECK_EXTRA_RESERVED));
}
static dsl_dir_t *
closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
{
for (; ds1; ds1 = ds1->dd_parent) {
dsl_dir_t *dd;
for (dd = ds2; dd; dd = dd->dd_parent) {
if (ds1 == dd)
return (dd);
}
}
return (NULL);
}
/*
* If delta is applied to dd, how much of that delta would be applied to
* ancestor? Syncing context only.
*/
static int64_t
would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
{
if (dd == ancestor)
return (delta);
mutex_enter(&dd->dd_lock);
delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
mutex_exit(&dd->dd_lock);
return (would_change(dd->dd_parent, delta, ancestor));
}
typedef struct dsl_dir_rename_arg {
const char *ddra_oldname;
const char *ddra_newname;
cred_t *ddra_cred;
} dsl_dir_rename_arg_t;
typedef struct dsl_valid_rename_arg {
int char_delta;
int nest_delta;
} dsl_valid_rename_arg_t;
/* ARGSUSED */
static int
dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
{
dsl_valid_rename_arg_t *dvra = arg;
char namebuf[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(ds, namebuf);
ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
<, ZFS_MAX_DATASET_NAME_LEN);
int namelen = strlen(namebuf) + dvra->char_delta;
int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
return (SET_ERROR(ENAMETOOLONG));
return (0);
}
static int
dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
{
dsl_dir_rename_arg_t *ddra = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dir_t *dd, *newparent;
dsl_valid_rename_arg_t dvra;
dsl_dataset_t *parentds;
objset_t *parentos;
const char *mynewname;
int error;
/* target dir should exist */
error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
if (error != 0)
return (error);
/* new parent should exist */
error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
&newparent, &mynewname);
if (error != 0) {
dsl_dir_rele(dd, FTAG);
return (error);
}
/* can't rename to different pool */
if (dd->dd_pool != newparent->dd_pool) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (SET_ERROR(EXDEV));
}
/* new name should not already exist */
if (mynewname == NULL) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (SET_ERROR(EEXIST));
}
/* can't rename below anything but filesystems (eg. no ZVOLs) */
error = dsl_dataset_hold_obj(newparent->dd_pool,
dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
if (error != 0) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (error);
}
error = dmu_objset_from_ds(parentds, &parentos);
if (error != 0) {
dsl_dataset_rele(parentds, FTAG);
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (error);
}
if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
dsl_dataset_rele(parentds, FTAG);
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
}
dsl_dataset_rele(parentds, FTAG);
ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
<, ZFS_MAX_DATASET_NAME_LEN);
ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
<, ZFS_MAX_DATASET_NAME_LEN);
dvra.char_delta = strlen(ddra->ddra_newname)
- strlen(ddra->ddra_oldname);
dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
- get_dataset_depth(ddra->ddra_oldname);
/* if the name length is growing, validate child name lengths */
if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
&dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
if (error != 0) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (error);
}
}
if (dmu_tx_is_syncing(tx)) {
if (spa_feature_is_active(dp->dp_spa,
SPA_FEATURE_FS_SS_LIMIT)) {
/*
* Although this is the check function and we don't
* normally make on-disk changes in check functions,
* we need to do that here.
*
* Ensure this portion of the tree's counts have been
* initialized in case the new parent has limits set.
*/
dsl_dir_init_fs_ss_count(dd, tx);
}
}
if (newparent != dd->dd_parent) {
/* is there enough space? */
uint64_t myspace =
MAX(dsl_dir_phys(dd)->dd_used_bytes,
dsl_dir_phys(dd)->dd_reserved);
objset_t *os = dd->dd_pool->dp_meta_objset;
uint64_t fs_cnt = 0;
uint64_t ss_cnt = 0;
if (dsl_dir_is_zapified(dd)) {
int err;
err = zap_lookup(os, dd->dd_object,
DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
&fs_cnt);
if (err != ENOENT && err != 0) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (err);
}
/*
* have to add 1 for the filesystem itself that we're
* moving
*/
fs_cnt++;
err = zap_lookup(os, dd->dd_object,
DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
&ss_cnt);
if (err != ENOENT && err != 0) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (err);
}
}
/* check for encryption errors */
error = dsl_dir_rename_crypt_check(dd, newparent);
if (error != 0) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (SET_ERROR(EACCES));
}
/* no rename into our descendant */
if (closest_common_ancestor(dd, newparent) == dd) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (SET_ERROR(EINVAL));
}
error = dsl_dir_transfer_possible(dd->dd_parent,
newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
if (error != 0) {
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (error);
}
}
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
return (0);
}
static void
dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
{
dsl_dir_rename_arg_t *ddra = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dir_t *dd, *newparent;
const char *mynewname;
int error;
objset_t *mos = dp->dp_meta_objset;
VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
&mynewname));
/* Log this before we change the name. */
spa_history_log_internal_dd(dd, "rename", tx,
"-> %s", ddra->ddra_newname);
if (newparent != dd->dd_parent) {
objset_t *os = dd->dd_pool->dp_meta_objset;
uint64_t fs_cnt = 0;
uint64_t ss_cnt = 0;
/*
* We already made sure the dd counts were initialized in the
* check function.
*/
if (spa_feature_is_active(dp->dp_spa,
SPA_FEATURE_FS_SS_LIMIT)) {
VERIFY0(zap_lookup(os, dd->dd_object,
DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
&fs_cnt));
/* add 1 for the filesystem itself that we're moving */
fs_cnt++;
VERIFY0(zap_lookup(os, dd->dd_object,
DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
&ss_cnt));
}
dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
DD_FIELD_FILESYSTEM_COUNT, tx);
dsl_fs_ss_count_adjust(newparent, fs_cnt,
DD_FIELD_FILESYSTEM_COUNT, tx);
dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
DD_FIELD_SNAPSHOT_COUNT, tx);
dsl_fs_ss_count_adjust(newparent, ss_cnt,
DD_FIELD_SNAPSHOT_COUNT, tx);
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
-dsl_dir_phys(dd)->dd_used_bytes,
-dsl_dir_phys(dd)->dd_compressed_bytes,
-dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
dsl_dir_diduse_space(newparent, DD_USED_CHILD,
dsl_dir_phys(dd)->dd_used_bytes,
dsl_dir_phys(dd)->dd_compressed_bytes,
dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
if (dsl_dir_phys(dd)->dd_reserved >
dsl_dir_phys(dd)->dd_used_bytes) {
uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
dsl_dir_phys(dd)->dd_used_bytes;
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
-unused_rsrv, 0, 0, tx);
dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
unused_rsrv, 0, 0, tx);
}
}
dmu_buf_will_dirty(dd->dd_dbuf, tx);
/* remove from old parent zapobj */
error = zap_remove(mos,
dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
dd->dd_myname, tx);
ASSERT0(error);
(void) strlcpy(dd->dd_myname, mynewname,
sizeof (dd->dd_myname));
dsl_dir_rele(dd->dd_parent, dd);
dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
VERIFY0(dsl_dir_hold_obj(dp,
newparent->dd_object, NULL, dd, &dd->dd_parent));
/* add to new parent zapobj */
VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
dd->dd_myname, 8, 1, &dd->dd_object, tx));
zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
ddra->ddra_newname, B_TRUE);
dsl_prop_notify_all(dd);
dsl_dir_rele(newparent, FTAG);
dsl_dir_rele(dd, FTAG);
}
int
dsl_dir_rename(const char *oldname, const char *newname)
{
dsl_dir_rename_arg_t ddra;
ddra.ddra_oldname = oldname;
ddra.ddra_newname = newname;
ddra.ddra_cred = CRED();
return (dsl_sync_task(oldname,
dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
3, ZFS_SPACE_CHECK_RESERVED));
}
int
dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
{
dsl_dir_t *ancestor;
int64_t adelta;
uint64_t avail;
int err;
ancestor = closest_common_ancestor(sdd, tdd);
adelta = would_change(sdd, -space, ancestor);
avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
if (avail < space)
return (SET_ERROR(ENOSPC));
err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
ancestor, cr);
if (err != 0)
return (err);
err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
ancestor, cr);
if (err != 0)
return (err);
return (0);
}
inode_timespec_t
dsl_dir_snap_cmtime(dsl_dir_t *dd)
{
inode_timespec_t t;
mutex_enter(&dd->dd_lock);
t = dd->dd_snap_cmtime;
mutex_exit(&dd->dd_lock);
return (t);
}
void
dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
{
inode_timespec_t t;
gethrestime(&t);
mutex_enter(&dd->dd_lock);
dd->dd_snap_cmtime = t;
mutex_exit(&dd->dd_lock);
}
void
dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
{
objset_t *mos = dd->dd_pool->dp_meta_objset;
dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
}
boolean_t
dsl_dir_is_zapified(dsl_dir_t *dd)
{
dmu_object_info_t doi;
dmu_object_info_from_db(dd->dd_dbuf, &doi);
return (doi.doi_type == DMU_OTN_ZAP_METADATA);
}
#if defined(_KERNEL)
EXPORT_SYMBOL(dsl_dir_set_quota);
EXPORT_SYMBOL(dsl_dir_set_reservation);
#endif