zfs-builds-mm/zfs-0.8.3/module/icp/algs/skein/skein_block.c
2020-03-01 19:43:35 +01:00

790 lines
22 KiB
C

/*
* Implementation of the Skein block functions.
* Source code author: Doug Whiting, 2008.
* This algorithm and source code is released to the public domain.
* Compile-time switches:
* SKEIN_USE_ASM -- set bits (256/512/1024) to select which
* versions use ASM code for block processing
* [default: use C for all block sizes]
*/
/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
#include <sys/skein.h>
#include "skein_impl.h"
#include <sys/isa_defs.h> /* for _ILP32 */
#ifndef SKEIN_USE_ASM
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
#endif
#ifndef SKEIN_LOOP
/*
* The low-level checksum routines use a lot of stack space. On systems where
* small stacks frame are enforced (like 32-bit kernel builds), do not unroll
* checksum calculations to save stack space.
*
* Even with no loops unrolled, we still can exceed the 1k stack frame limit
* in Skein1024_Process_Block() (it hits 1272 bytes on ARM32). We can
* safely ignore it though, since that the checksum functions will be called
* from a worker thread that won't be using much stack. That's why we have
* the #pragma here to ignore the warning.
*/
#if defined(_ILP32) || defined(__powerpc) /* Assume small stack */
#pragma GCC diagnostic ignored "-Wframe-larger-than="
/*
* We're running on 32-bit, don't unroll loops to save stack frame space
*
* Due to the ways the calculations on SKEIN_LOOP are done in
* Skein_*_Process_Block(), a value of 111 disables unrolling loops
* in any of those functions.
*/
#define SKEIN_LOOP 111
#else
/* We're compiling with large stacks */
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
#endif
#endif
/* some useful definitions for code here */
#define BLK_BITS (WCNT*64)
#define KW_TWK_BASE (0)
#define KW_KEY_BASE (3)
#define ks (kw + KW_KEY_BASE)
#define ts (kw + KW_TWK_BASE)
/* no debugging in Illumos version */
#define DebugSaveTweak(ctx)
/* Skein_256 */
#if !(SKEIN_USE_ASM & 256)
void
Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
size_t blkCnt, size_t byteCntAdd)
{
enum {
WCNT = SKEIN_256_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
#else
#define SKEIN_UNROLL_256 (0)
#endif
#if SKEIN_UNROLL_256
#if (RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
#endif
size_t r;
/* key schedule words : chaining vars + tweak + "rotation" */
uint64_t kw[WCNT + 4 + RCNT * 2];
#else
uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
#endif
/* local copy of context vars, for speed */
uint64_t X0, X1, X2, X3;
uint64_t w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
/* use for debugging (help compiler put Xn in registers) */
const uint64_t *Xptr[4];
Xptr[0] = &X0;
Xptr[1] = &X1;
Xptr[2] = &X2;
Xptr[3] = &X3;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT);
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1] + ts[0];
X2 = w[2] + ks[2] + ts[1];
X3 = w[3] + ks[3];
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
Xptr); /* show starting state values */
blkPtr += SKEIN_256_BLOCK_BYTES;
/* run the rounds */
#define Round256(p0, p1, p2, p3, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
#if SKEIN_UNROLL_256 == 0
#define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
Round256(p0, p1, p2, p3, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
#define I256(R) \
X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \
X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
X3 += ks[((R) + 4) % 5] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R256(p0, p1, p2, p3, ROT, rNum) \
Round256(p0, p1, p2, p3, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
#define I256(R) \
X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \
X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \
X3 += ks[r + (R) + 3] + r + (R); \
ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */ \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
/* loop through it */
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
#endif
{
#define R256_8_rounds(R) \
R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
I256(2 * (R)); \
R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
I256(2 * (R) + 1);
R256_8_rounds(0);
#define R256_Unroll_R(NN) \
((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
(SKEIN_UNROLL_256 > (NN)))
#if R256_Unroll_R(1)
R256_8_rounds(1);
#endif
#if R256_Unroll_R(2)
R256_8_rounds(2);
#endif
#if R256_Unroll_R(3)
R256_8_rounds(3);
#endif
#if R256_Unroll_R(4)
R256_8_rounds(4);
#endif
#if R256_Unroll_R(5)
R256_8_rounds(5);
#endif
#if R256_Unroll_R(6)
R256_8_rounds(6);
#endif
#if R256_Unroll_R(7)
R256_8_rounds(7);
#endif
#if R256_Unroll_R(8)
R256_8_rounds(8);
#endif
#if R256_Unroll_R(9)
R256_8_rounds(9);
#endif
#if R256_Unroll_R(10)
R256_8_rounds(10);
#endif
#if R256_Unroll_R(11)
R256_8_rounds(11);
#endif
#if R256_Unroll_R(12)
R256_8_rounds(12);
#endif
#if R256_Unroll_R(13)
R256_8_rounds(13);
#endif
#if R256_Unroll_R(14)
R256_8_rounds(14);
#endif
#if (SKEIN_UNROLL_256 > 14)
#error "need more unrolling in Skein_256_Process_Block"
#endif
}
/*
* do the final "feedforward" xor, update context chaining vars
*/
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
} while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t
Skein_256_Process_Block_CodeSize(void)
{
return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
((uint8_t *)Skein_256_Process_Block);
}
uint_t
Skein_256_Unroll_Cnt(void)
{
return (SKEIN_UNROLL_256);
}
#endif
#endif
/* Skein_512 */
#if !(SKEIN_USE_ASM & 512)
void
Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
size_t blkCnt, size_t byteCntAdd)
{
enum {
WCNT = SKEIN_512_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_512_ROUNDS_TOTAL / 8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
#else
#define SKEIN_UNROLL_512 (0)
#endif
#if SKEIN_UNROLL_512
#if (RCNT % SKEIN_UNROLL_512)
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
#endif
size_t r;
/* key schedule words : chaining vars + tweak + "rotation" */
uint64_t kw[WCNT + 4 + RCNT * 2];
#else
uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
#endif
/* local copy of vars, for speed */
uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
uint64_t w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
/* use for debugging (help compiler put Xn in registers) */
const uint64_t *Xptr[8];
Xptr[0] = &X0;
Xptr[1] = &X1;
Xptr[2] = &X2;
Xptr[3] = &X3;
Xptr[4] = &X4;
Xptr[5] = &X5;
Xptr[6] = &X6;
Xptr[7] = &X7;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ctx->X[4];
ks[5] = ctx->X[5];
ks[6] = ctx->X[6];
ks[7] = ctx->X[7];
ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT);
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1];
X2 = w[2] + ks[2];
X3 = w[3] + ks[3];
X4 = w[4] + ks[4];
X5 = w[5] + ks[5] + ts[0];
X6 = w[6] + ks[6] + ts[1];
X7 = w[7] + ks[7];
blkPtr += SKEIN_512_BLOCK_BYTES;
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
Xptr);
/* run the rounds */
#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;
#if SKEIN_UNROLL_512 == 0
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
#define I512(R) \
X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */\
X1 += ks[((R) + 2) % 9]; \
X2 += ks[((R) + 3) % 9]; \
X3 += ks[((R) + 4) % 9]; \
X4 += ks[((R) + 5) % 9]; \
X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
X7 += ks[((R) + 8) % 9] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
#define I512(R) \
X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
X1 += ks[r + (R) + 1]; \
X2 += ks[r + (R) + 2]; \
X3 += ks[r + (R) + 3]; \
X4 += ks[r + (R) + 4]; \
X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
X7 += ks[r + (R) + 7] + r + (R); \
ks[r + (R)+8] = ks[r + (R) - 1]; /* rotate key schedule */\
ts[r + (R)+2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
/* loop through it */
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
#endif /* end of looped code definitions */
{
#define R512_8_rounds(R) /* do 8 full rounds */ \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
I512(2 * (R)); \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
I512(2*(R) + 1); /* and key injection */
R512_8_rounds(0);
#define R512_Unroll_R(NN) \
((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
(SKEIN_UNROLL_512 > (NN)))
#if R512_Unroll_R(1)
R512_8_rounds(1);
#endif
#if R512_Unroll_R(2)
R512_8_rounds(2);
#endif
#if R512_Unroll_R(3)
R512_8_rounds(3);
#endif
#if R512_Unroll_R(4)
R512_8_rounds(4);
#endif
#if R512_Unroll_R(5)
R512_8_rounds(5);
#endif
#if R512_Unroll_R(6)
R512_8_rounds(6);
#endif
#if R512_Unroll_R(7)
R512_8_rounds(7);
#endif
#if R512_Unroll_R(8)
R512_8_rounds(8);
#endif
#if R512_Unroll_R(9)
R512_8_rounds(9);
#endif
#if R512_Unroll_R(10)
R512_8_rounds(10);
#endif
#if R512_Unroll_R(11)
R512_8_rounds(11);
#endif
#if R512_Unroll_R(12)
R512_8_rounds(12);
#endif
#if R512_Unroll_R(13)
R512_8_rounds(13);
#endif
#if R512_Unroll_R(14)
R512_8_rounds(14);
#endif
#if (SKEIN_UNROLL_512 > 14)
#error "need more unrolling in Skein_512_Process_Block"
#endif
}
/*
* do the final "feedforward" xor, update context chaining vars
*/
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
ctx->X[4] = X4 ^ w[4];
ctx->X[5] = X5 ^ w[5];
ctx->X[6] = X6 ^ w[6];
ctx->X[7] = X7 ^ w[7];
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
} while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t
Skein_512_Process_Block_CodeSize(void)
{
return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
((uint8_t *)Skein_512_Process_Block);
}
uint_t
Skein_512_Unroll_Cnt(void)
{
return (SKEIN_UNROLL_512);
}
#endif
#endif
/* Skein1024 */
#if !(SKEIN_USE_ASM & 1024)
void
Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
size_t blkCnt, size_t byteCntAdd)
{
/* do it in C, always looping (unrolled is bigger AND slower!) */
enum {
WCNT = SKEIN1024_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
#else
#define SKEIN_UNROLL_1024 (0)
#endif
#if (SKEIN_UNROLL_1024 != 0)
#if (RCNT % SKEIN_UNROLL_1024)
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
#endif
size_t r;
/* key schedule words : chaining vars + tweak + "rotation" */
uint64_t kw[WCNT + 4 + RCNT * 2];
#else
uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
#endif
/* local copy of vars, for speed */
uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
X12, X13, X14, X15;
uint64_t w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
/* use for debugging (help compiler put Xn in registers) */
const uint64_t *Xptr[16];
Xptr[0] = &X00;
Xptr[1] = &X01;
Xptr[2] = &X02;
Xptr[3] = &X03;
Xptr[4] = &X04;
Xptr[5] = &X05;
Xptr[6] = &X06;
Xptr[7] = &X07;
Xptr[8] = &X08;
Xptr[9] = &X09;
Xptr[10] = &X10;
Xptr[11] = &X11;
Xptr[12] = &X12;
Xptr[13] = &X13;
Xptr[14] = &X14;
Xptr[15] = &X15;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ctx->X[4];
ks[5] = ctx->X[5];
ks[6] = ctx->X[6];
ks[7] = ctx->X[7];
ks[8] = ctx->X[8];
ks[9] = ctx->X[9];
ks[10] = ctx->X[10];
ks[11] = ctx->X[11];
ks[12] = ctx->X[12];
ks[13] = ctx->X[13];
ks[14] = ctx->X[14];
ks[15] = ctx->X[15];
ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT);
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X00 = w[0] + ks[0]; /* do the first full key injection */
X01 = w[1] + ks[1];
X02 = w[2] + ks[2];
X03 = w[3] + ks[3];
X04 = w[4] + ks[4];
X05 = w[5] + ks[5];
X06 = w[6] + ks[6];
X07 = w[7] + ks[7];
X08 = w[8] + ks[8];
X09 = w[9] + ks[9];
X10 = w[10] + ks[10];
X11 = w[11] + ks[11];
X12 = w[12] + ks[12];
X13 = w[13] + ks[13] + ts[0];
X14 = w[14] + ks[14] + ts[1];
X15 = w[15] + ks[15];
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
Xptr);
#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
pD, pE, pF, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;
#if SKEIN_UNROLL_1024 == 0
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
pE, pF, ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
pD, pE, pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
#define I1024(R) \
X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */\
X01 += ks[((R) + 2) % 17]; \
X02 += ks[((R) + 3) % 17]; \
X03 += ks[((R) + 4) % 17]; \
X04 += ks[((R) + 5) % 17]; \
X05 += ks[((R) + 6) % 17]; \
X06 += ks[((R) + 7) % 17]; \
X07 += ks[((R) + 8) % 17]; \
X08 += ks[((R) + 9) % 17]; \
X09 += ks[((R) + 10) % 17]; \
X10 += ks[((R) + 11) % 17]; \
X11 += ks[((R) + 12) % 17]; \
X12 += ks[((R) + 13) % 17]; \
X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
X15 += ks[((R) + 16) % 17] + (R) +1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
pE, pF, ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
pD, pE, pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
#define I1024(R) \
X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \
X01 += ks[r + (R) + 1]; \
X02 += ks[r + (R) + 2]; \
X03 += ks[r + (R) + 3]; \
X04 += ks[r + (R) + 4]; \
X05 += ks[r + (R) + 5]; \
X06 += ks[r + (R) + 6]; \
X07 += ks[r + (R) + 7]; \
X08 += ks[r + (R) + 8]; \
X09 += ks[r + (R) + 9]; \
X10 += ks[r + (R) + 10]; \
X11 += ks[r + (R) + 11]; \
X12 += ks[r + (R) + 12]; \
X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
X15 += ks[r + (R) + 15] + r + (R); \
ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
/* loop through it */
for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
#endif
{
#define R1024_8_rounds(R) /* do 8 full rounds */ \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
14, 15, R1024_0, 8 * (R) + 1); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
08, 01, R1024_1, 8 * (R) + 2); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
10, 09, R1024_2, 8 * (R) + 3); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
12, 07, R1024_3, 8 * (R) + 4); \
I1024(2 * (R)); \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
14, 15, R1024_4, 8 * (R) + 5); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
08, 01, R1024_5, 8 * (R) + 6); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
10, 09, R1024_6, 8 * (R) + 7); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
12, 07, R1024_7, 8 * (R) + 8); \
I1024(2 * (R) + 1);
R1024_8_rounds(0);
#define R1024_Unroll_R(NN) \
((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \
(SKEIN_UNROLL_1024 > (NN)))
#if R1024_Unroll_R(1)
R1024_8_rounds(1);
#endif
#if R1024_Unroll_R(2)
R1024_8_rounds(2);
#endif
#if R1024_Unroll_R(3)
R1024_8_rounds(3);
#endif
#if R1024_Unroll_R(4)
R1024_8_rounds(4);
#endif
#if R1024_Unroll_R(5)
R1024_8_rounds(5);
#endif
#if R1024_Unroll_R(6)
R1024_8_rounds(6);
#endif
#if R1024_Unroll_R(7)
R1024_8_rounds(7);
#endif
#if R1024_Unroll_R(8)
R1024_8_rounds(8);
#endif
#if R1024_Unroll_R(9)
R1024_8_rounds(9);
#endif
#if R1024_Unroll_R(10)
R1024_8_rounds(10);
#endif
#if R1024_Unroll_R(11)
R1024_8_rounds(11);
#endif
#if R1024_Unroll_R(12)
R1024_8_rounds(12);
#endif
#if R1024_Unroll_R(13)
R1024_8_rounds(13);
#endif
#if R1024_Unroll_R(14)
R1024_8_rounds(14);
#endif
#if (SKEIN_UNROLL_1024 > 14)
#error "need more unrolling in Skein_1024_Process_Block"
#endif
}
/*
* do the final "feedforward" xor, update context chaining vars
*/
ctx->X[0] = X00 ^ w[0];
ctx->X[1] = X01 ^ w[1];
ctx->X[2] = X02 ^ w[2];
ctx->X[3] = X03 ^ w[3];
ctx->X[4] = X04 ^ w[4];
ctx->X[5] = X05 ^ w[5];
ctx->X[6] = X06 ^ w[6];
ctx->X[7] = X07 ^ w[7];
ctx->X[8] = X08 ^ w[8];
ctx->X[9] = X09 ^ w[9];
ctx->X[10] = X10 ^ w[10];
ctx->X[11] = X11 ^ w[11];
ctx->X[12] = X12 ^ w[12];
ctx->X[13] = X13 ^ w[13];
ctx->X[14] = X14 ^ w[14];
ctx->X[15] = X15 ^ w[15];
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
blkPtr += SKEIN1024_BLOCK_BYTES;
} while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t
Skein1024_Process_Block_CodeSize(void)
{
return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
((uint8_t *)Skein1024_Process_Block);
}
uint_t
Skein1024_Unroll_Cnt(void)
{
return (SKEIN_UNROLL_1024);
}
#endif
#endif