zfs-builds-mm/zfs-0.8.3/cmd/raidz_test/raidz_test.c
2020-03-01 19:43:35 +01:00

782 lines
18 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/zio.h>
#include <umem.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
#include <assert.h>
#include <stdio.h>
#include "raidz_test.h"
static int *rand_data;
raidz_test_opts_t rto_opts;
static char gdb[256];
static const char gdb_tmpl[] = "gdb -ex \"set pagination 0\" -p %d";
static void sig_handler(int signo)
{
struct sigaction action;
/*
* Restore default action and re-raise signal so SIGSEGV and
* SIGABRT can trigger a core dump.
*/
action.sa_handler = SIG_DFL;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
(void) sigaction(signo, &action, NULL);
if (rto_opts.rto_gdb)
if (system(gdb)) { }
raise(signo);
}
static void print_opts(raidz_test_opts_t *opts, boolean_t force)
{
char *verbose;
switch (opts->rto_v) {
case 0:
verbose = "no";
break;
case 1:
verbose = "info";
break;
default:
verbose = "debug";
break;
}
if (force || opts->rto_v >= D_INFO) {
(void) fprintf(stdout, DBLSEP "Running with options:\n"
" (-a) zio ashift : %zu\n"
" (-o) zio offset : 1 << %zu\n"
" (-d) number of raidz data columns : %zu\n"
" (-s) size of DATA : 1 << %zu\n"
" (-S) sweep parameters : %s \n"
" (-v) verbose : %s \n\n",
opts->rto_ashift, /* -a */
ilog2(opts->rto_offset), /* -o */
opts->rto_dcols, /* -d */
ilog2(opts->rto_dsize), /* -s */
opts->rto_sweep ? "yes" : "no", /* -S */
verbose); /* -v */
}
}
static void usage(boolean_t requested)
{
const raidz_test_opts_t *o = &rto_opts_defaults;
FILE *fp = requested ? stdout : stderr;
(void) fprintf(fp, "Usage:\n"
"\t[-a zio ashift (default: %zu)]\n"
"\t[-o zio offset, exponent radix 2 (default: %zu)]\n"
"\t[-d number of raidz data columns (default: %zu)]\n"
"\t[-s zio size, exponent radix 2 (default: %zu)]\n"
"\t[-S parameter sweep (default: %s)]\n"
"\t[-t timeout for parameter sweep test]\n"
"\t[-B benchmark all raidz implementations]\n"
"\t[-v increase verbosity (default: %zu)]\n"
"\t[-h (print help)]\n"
"\t[-T test the test, see if failure would be detected]\n"
"\t[-D debug (attach gdb on SIGSEGV)]\n"
"",
o->rto_ashift, /* -a */
ilog2(o->rto_offset), /* -o */
o->rto_dcols, /* -d */
ilog2(o->rto_dsize), /* -s */
rto_opts.rto_sweep ? "yes" : "no", /* -S */
o->rto_v); /* -d */
exit(requested ? 0 : 1);
}
static void process_options(int argc, char **argv)
{
size_t value;
int opt;
raidz_test_opts_t *o = &rto_opts;
bcopy(&rto_opts_defaults, o, sizeof (*o));
while ((opt = getopt(argc, argv, "TDBSvha:o:d:s:t:")) != -1) {
value = 0;
switch (opt) {
case 'a':
value = strtoull(optarg, NULL, 0);
o->rto_ashift = MIN(13, MAX(9, value));
break;
case 'o':
value = strtoull(optarg, NULL, 0);
o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
break;
case 'd':
value = strtoull(optarg, NULL, 0);
o->rto_dcols = MIN(255, MAX(1, value));
break;
case 's':
value = strtoull(optarg, NULL, 0);
o->rto_dsize = 1ULL << MIN(SPA_MAXBLOCKSHIFT,
MAX(SPA_MINBLOCKSHIFT, value));
break;
case 't':
value = strtoull(optarg, NULL, 0);
o->rto_sweep_timeout = value;
break;
case 'v':
o->rto_v++;
break;
case 'S':
o->rto_sweep = 1;
break;
case 'B':
o->rto_benchmark = 1;
break;
case 'D':
o->rto_gdb = 1;
break;
case 'T':
o->rto_sanity = 1;
break;
case 'h':
usage(B_TRUE);
break;
case '?':
default:
usage(B_FALSE);
break;
}
}
}
#define DATA_COL(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_abd)
#define DATA_COL_SIZE(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_size)
#define CODE_COL(rm, i) ((rm)->rm_col[(i)].rc_abd)
#define CODE_COL_SIZE(rm, i) ((rm)->rm_col[(i)].rc_size)
static int
cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
{
int i, ret = 0;
VERIFY(parity >= 1 && parity <= 3);
for (i = 0; i < parity; i++) {
if (abd_cmp(CODE_COL(rm, i), CODE_COL(opts->rm_golden, i))
!= 0) {
ret++;
LOG_OPT(D_DEBUG, opts,
"\nParity block [%d] different!\n", i);
}
}
return (ret);
}
static int
cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
{
int i, ret = 0;
int dcols = opts->rm_golden->rm_cols - raidz_parity(opts->rm_golden);
for (i = 0; i < dcols; i++) {
if (abd_cmp(DATA_COL(opts->rm_golden, i), DATA_COL(rm, i))
!= 0) {
ret++;
LOG_OPT(D_DEBUG, opts,
"\nData block [%d] different!\n", i);
}
}
return (ret);
}
static int
init_rand(void *data, size_t size, void *private)
{
int i;
int *dst = (int *)data;
for (i = 0; i < size / sizeof (int); i++)
dst[i] = rand_data[i];
return (0);
}
static void
corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
{
int i;
raidz_col_t *col;
for (i = 0; i < cnt; i++) {
col = &rm->rm_col[tgts[i]];
abd_iterate_func(col->rc_abd, 0, col->rc_size, init_rand, NULL);
}
}
void
init_zio_abd(zio_t *zio)
{
abd_iterate_func(zio->io_abd, 0, zio->io_size, init_rand, NULL);
}
static void
fini_raidz_map(zio_t **zio, raidz_map_t **rm)
{
vdev_raidz_map_free(*rm);
raidz_free((*zio)->io_abd, (*zio)->io_size);
umem_free(*zio, sizeof (zio_t));
*zio = NULL;
*rm = NULL;
}
static int
init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
{
int err = 0;
zio_t *zio_test;
raidz_map_t *rm_test;
const size_t total_ncols = opts->rto_dcols + parity;
if (opts->rm_golden) {
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
}
opts->zio_golden = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
zio_test = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
opts->zio_golden->io_offset = zio_test->io_offset = opts->rto_offset;
opts->zio_golden->io_size = zio_test->io_size = opts->rto_dsize;
opts->zio_golden->io_abd = raidz_alloc(opts->rto_dsize);
zio_test->io_abd = raidz_alloc(opts->rto_dsize);
init_zio_abd(opts->zio_golden);
init_zio_abd(zio_test);
VERIFY0(vdev_raidz_impl_set("original"));
opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
opts->rto_ashift, total_ncols, parity);
rm_test = vdev_raidz_map_alloc(zio_test,
opts->rto_ashift, total_ncols, parity);
VERIFY(opts->zio_golden);
VERIFY(opts->rm_golden);
vdev_raidz_generate_parity(opts->rm_golden);
vdev_raidz_generate_parity(rm_test);
/* sanity check */
err |= cmp_data(opts, rm_test);
err |= cmp_code(opts, rm_test, parity);
if (err)
ERR("initializing the golden copy ... [FAIL]!\n");
/* tear down raidz_map of test zio */
fini_raidz_map(&zio_test, &rm_test);
return (err);
}
static raidz_map_t *
init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
{
raidz_map_t *rm = NULL;
const size_t alloc_dsize = opts->rto_dsize;
const size_t total_ncols = opts->rto_dcols + parity;
const int ccols[] = { 0, 1, 2 };
VERIFY(zio);
VERIFY(parity <= 3 && parity >= 1);
*zio = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
(*zio)->io_offset = 0;
(*zio)->io_size = alloc_dsize;
(*zio)->io_abd = raidz_alloc(alloc_dsize);
init_zio_abd(*zio);
rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
total_ncols, parity);
VERIFY(rm);
/* Make sure code columns are destroyed */
corrupt_colums(rm, ccols, parity);
return (rm);
}
static int
run_gen_check(raidz_test_opts_t *opts)
{
char **impl_name;
int fn, err = 0;
zio_t *zio_test;
raidz_map_t *rm_test;
err = init_raidz_golden_map(opts, PARITY_PQR);
if (0 != err)
return (err);
LOG(D_INFO, DBLSEP);
LOG(D_INFO, "Testing parity generation...\n");
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
impl_name++) {
LOG(D_INFO, SEP);
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
if (0 != vdev_raidz_impl_set(*impl_name)) {
LOG(D_INFO, "[SKIP]\n");
continue;
} else {
LOG(D_INFO, "[SUPPORTED]\n");
}
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
/* create suitable raidz_map */
rm_test = init_raidz_map(opts, &zio_test, fn+1);
VERIFY(rm_test);
LOG(D_INFO, "\t\tTesting method [%s] ...",
raidz_gen_name[fn]);
if (!opts->rto_sanity)
vdev_raidz_generate_parity(rm_test);
if (cmp_code(opts, rm_test, fn+1) != 0) {
LOG(D_INFO, "[FAIL]\n");
err++;
} else
LOG(D_INFO, "[PASS]\n");
fini_raidz_map(&zio_test, &rm_test);
}
}
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
return (err);
}
static int
run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
{
int x0, x1, x2;
int tgtidx[3];
int err = 0;
static const int rec_tgts[7][3] = {
{1, 2, 3}, /* rec_p: bad QR & D[0] */
{0, 2, 3}, /* rec_q: bad PR & D[0] */
{0, 1, 3}, /* rec_r: bad PQ & D[0] */
{2, 3, 4}, /* rec_pq: bad R & D[0][1] */
{1, 3, 4}, /* rec_pr: bad Q & D[0][1] */
{0, 3, 4}, /* rec_qr: bad P & D[0][1] */
{3, 4, 5} /* rec_pqr: bad & D[0][1][2] */
};
memcpy(tgtidx, rec_tgts[fn], sizeof (tgtidx));
if (fn < RAIDZ_REC_PQ) {
/* can reconstruct 1 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
if (x0 >= rm->rm_cols - raidz_parity(rm))
continue;
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
LOG(D_DEBUG, "[%d] ", x0);
tgtidx[2] = x0 + raidz_parity(rm);
corrupt_colums(rm, tgtidx+2, 1);
if (!opts->rto_sanity)
vdev_raidz_reconstruct(rm, tgtidx, 3);
if (cmp_data(opts, rm) != 0) {
err++;
LOG(D_DEBUG, "\nREC D[%d]... [FAIL]\n", x0);
}
}
} else if (fn < RAIDZ_REC_PQR) {
/* can reconstruct 2 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
if (x0 >= rm->rm_cols - raidz_parity(rm))
continue;
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
if (x1 >= rm->rm_cols - raidz_parity(rm))
continue;
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
LOG(D_DEBUG, "[%d %d] ", x0, x1);
tgtidx[1] = x0 + raidz_parity(rm);
tgtidx[2] = x1 + raidz_parity(rm);
corrupt_colums(rm, tgtidx+1, 2);
if (!opts->rto_sanity)
vdev_raidz_reconstruct(rm, tgtidx, 3);
if (cmp_data(opts, rm) != 0) {
err++;
LOG(D_DEBUG, "\nREC D[%d %d]... "
"[FAIL]\n", x0, x1);
}
}
}
} else {
/* can reconstruct 3 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
if (x0 >= rm->rm_cols - raidz_parity(rm))
continue;
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
if (x1 >= rm->rm_cols - raidz_parity(rm))
continue;
for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) {
if (x2 >=
rm->rm_cols - raidz_parity(rm))
continue;
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
LOG(D_DEBUG, "[%d %d %d]", x0, x1, x2);
tgtidx[0] = x0 + raidz_parity(rm);
tgtidx[1] = x1 + raidz_parity(rm);
tgtidx[2] = x2 + raidz_parity(rm);
corrupt_colums(rm, tgtidx, 3);
if (!opts->rto_sanity)
vdev_raidz_reconstruct(rm,
tgtidx, 3);
if (cmp_data(opts, rm) != 0) {
err++;
LOG(D_DEBUG,
"\nREC D[%d %d %d]... "
"[FAIL]\n", x0, x1, x2);
}
}
}
}
}
return (err);
}
static int
run_rec_check(raidz_test_opts_t *opts)
{
char **impl_name;
unsigned fn, err = 0;
zio_t *zio_test;
raidz_map_t *rm_test;
err = init_raidz_golden_map(opts, PARITY_PQR);
if (0 != err)
return (err);
LOG(D_INFO, DBLSEP);
LOG(D_INFO, "Testing data reconstruction...\n");
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
impl_name++) {
LOG(D_INFO, SEP);
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
if (vdev_raidz_impl_set(*impl_name) != 0) {
LOG(D_INFO, "[SKIP]\n");
continue;
} else
LOG(D_INFO, "[SUPPORTED]\n");
/* create suitable raidz_map */
rm_test = init_raidz_map(opts, &zio_test, PARITY_PQR);
/* generate parity */
vdev_raidz_generate_parity(rm_test);
for (fn = 0; fn < RAIDZ_REC_NUM; fn++) {
LOG(D_INFO, "\t\tTesting method [%s] ...",
raidz_rec_name[fn]);
if (run_rec_check_impl(opts, rm_test, fn) != 0) {
LOG(D_INFO, "[FAIL]\n");
err++;
} else
LOG(D_INFO, "[PASS]\n");
}
/* tear down test raidz_map */
fini_raidz_map(&zio_test, &rm_test);
}
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
return (err);
}
static int
run_test(raidz_test_opts_t *opts)
{
int err = 0;
if (opts == NULL)
opts = &rto_opts;
print_opts(opts, B_FALSE);
err |= run_gen_check(opts);
err |= run_rec_check(opts);
return (err);
}
#define SWEEP_RUNNING 0
#define SWEEP_FINISHED 1
#define SWEEP_ERROR 2
#define SWEEP_TIMEOUT 3
static int sweep_state = 0;
static raidz_test_opts_t failed_opts;
static kmutex_t sem_mtx;
static kcondvar_t sem_cv;
static int max_free_slots;
static int free_slots;
static void
sweep_thread(void *arg)
{
int err = 0;
raidz_test_opts_t *opts = (raidz_test_opts_t *)arg;
VERIFY(opts != NULL);
err = run_test(opts);
if (rto_opts.rto_sanity) {
/* 25% chance that a sweep test fails */
if (rand() < (RAND_MAX/4))
err = 1;
}
if (0 != err) {
mutex_enter(&sem_mtx);
memcpy(&failed_opts, opts, sizeof (raidz_test_opts_t));
sweep_state = SWEEP_ERROR;
mutex_exit(&sem_mtx);
}
umem_free(opts, sizeof (raidz_test_opts_t));
/* signal the next thread */
mutex_enter(&sem_mtx);
free_slots++;
cv_signal(&sem_cv);
mutex_exit(&sem_mtx);
thread_exit();
}
static int
run_sweep(void)
{
static const size_t dcols_v[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 16 };
static const size_t ashift_v[] = { 9, 12, 14 };
static const size_t size_v[] = { 1 << 9, 21 * (1 << 9), 13 * (1 << 12),
1 << 17, (1 << 20) - (1 << 12), SPA_MAXBLOCKSIZE };
(void) setvbuf(stdout, NULL, _IONBF, 0);
ulong_t total_comb = ARRAY_SIZE(size_v) * ARRAY_SIZE(ashift_v) *
ARRAY_SIZE(dcols_v);
ulong_t tried_comb = 0;
hrtime_t time_diff, start_time = gethrtime();
raidz_test_opts_t *opts;
int a, d, s;
max_free_slots = free_slots = MAX(2, boot_ncpus);
mutex_init(&sem_mtx, NULL, MUTEX_DEFAULT, NULL);
cv_init(&sem_cv, NULL, CV_DEFAULT, NULL);
for (s = 0; s < ARRAY_SIZE(size_v); s++)
for (a = 0; a < ARRAY_SIZE(ashift_v); a++)
for (d = 0; d < ARRAY_SIZE(dcols_v); d++) {
if (size_v[s] < (1 << ashift_v[a])) {
total_comb--;
continue;
}
if (++tried_comb % 20 == 0)
LOG(D_ALL, "%lu/%lu... ", tried_comb, total_comb);
/* wait for signal to start new thread */
mutex_enter(&sem_mtx);
while (cv_timedwait_sig(&sem_cv, &sem_mtx,
ddi_get_lbolt() + hz)) {
/* check if should stop the test (timeout) */
time_diff = (gethrtime() - start_time) / NANOSEC;
if (rto_opts.rto_sweep_timeout > 0 &&
time_diff >= rto_opts.rto_sweep_timeout) {
sweep_state = SWEEP_TIMEOUT;
rto_opts.rto_should_stop = B_TRUE;
mutex_exit(&sem_mtx);
goto exit;
}
/* check if should stop the test (error) */
if (sweep_state != SWEEP_RUNNING) {
mutex_exit(&sem_mtx);
goto exit;
}
/* exit loop if a slot is available */
if (free_slots > 0) {
break;
}
}
free_slots--;
mutex_exit(&sem_mtx);
opts = umem_zalloc(sizeof (raidz_test_opts_t), UMEM_NOFAIL);
opts->rto_ashift = ashift_v[a];
opts->rto_dcols = dcols_v[d];
opts->rto_offset = (1 << ashift_v[a]) * rand();
opts->rto_dsize = size_v[s];
opts->rto_v = 0; /* be quiet */
VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts,
0, NULL, TS_RUN, defclsyspri), !=, NULL);
}
exit:
LOG(D_ALL, "\nWaiting for test threads to finish...\n");
mutex_enter(&sem_mtx);
VERIFY(free_slots <= max_free_slots);
while (free_slots < max_free_slots) {
(void) cv_wait(&sem_cv, &sem_mtx);
}
mutex_exit(&sem_mtx);
if (sweep_state == SWEEP_ERROR) {
ERR("Sweep test failed! Failed option: \n");
print_opts(&failed_opts, B_TRUE);
} else {
if (sweep_state == SWEEP_TIMEOUT)
LOG(D_ALL, "Test timeout (%lus). Stopping...\n",
(ulong_t)rto_opts.rto_sweep_timeout);
LOG(D_ALL, "Sweep test succeeded on %lu raidz maps!\n",
(ulong_t)tried_comb);
}
mutex_destroy(&sem_mtx);
return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
}
int
main(int argc, char **argv)
{
size_t i;
struct sigaction action;
int err = 0;
/* init gdb string early */
(void) sprintf(gdb, gdb_tmpl, getpid());
action.sa_handler = sig_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
if (sigaction(SIGSEGV, &action, NULL) < 0) {
ERR("raidz_test: cannot catch SIGSEGV: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
(void) setvbuf(stdout, NULL, _IOLBF, 0);
dprintf_setup(&argc, argv);
process_options(argc, argv);
kernel_init(FREAD);
/* setup random data because rand() is not reentrant */
rand_data = (int *)umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
srand((unsigned)time(NULL) * getpid());
for (i = 0; i < SPA_MAXBLOCKSIZE / sizeof (int); i++)
rand_data[i] = rand();
mprotect(rand_data, SPA_MAXBLOCKSIZE, PROT_READ);
if (rto_opts.rto_benchmark) {
run_raidz_benchmark();
} else if (rto_opts.rto_sweep) {
err = run_sweep();
} else {
err = run_test(NULL);
}
umem_free(rand_data, SPA_MAXBLOCKSIZE);
kernel_fini();
return (err);
}