zfs-builds-mm/zfs-0.8.2/module/zfs/dnode_sync.c
2019-10-24 23:13:56 +02:00

825 lines
24 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_recv.h>
#include <sys/dsl_dataset.h>
#include <sys/spa.h>
#include <sys/range_tree.h>
#include <sys/zfeature.h>
static void
dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
{
dmu_buf_impl_t *db;
int txgoff = tx->tx_txg & TXG_MASK;
int nblkptr = dn->dn_phys->dn_nblkptr;
int old_toplvl = dn->dn_phys->dn_nlevels - 1;
int new_level = dn->dn_next_nlevels[txgoff];
int i;
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
/* this dnode can't be paged out because it's dirty */
ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
ASSERT(db != NULL);
dn->dn_phys->dn_nlevels = new_level;
dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
dn->dn_object, dn->dn_phys->dn_nlevels);
/* transfer dnode's block pointers to new indirect block */
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
ASSERT(db->db.db_data);
ASSERT(arc_released(db->db_buf));
ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
sizeof (blkptr_t) * nblkptr);
arc_buf_freeze(db->db_buf);
/* set dbuf's parent pointers to new indirect buf */
for (i = 0; i < nblkptr; i++) {
dmu_buf_impl_t *child =
dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
if (child == NULL)
continue;
#ifdef DEBUG
DB_DNODE_ENTER(child);
ASSERT3P(DB_DNODE(child), ==, dn);
DB_DNODE_EXIT(child);
#endif /* DEBUG */
if (child->db_parent && child->db_parent != dn->dn_dbuf) {
ASSERT(child->db_parent->db_level == db->db_level);
ASSERT(child->db_blkptr !=
&dn->dn_phys->dn_blkptr[child->db_blkid]);
mutex_exit(&child->db_mtx);
continue;
}
ASSERT(child->db_parent == NULL ||
child->db_parent == dn->dn_dbuf);
child->db_parent = db;
dbuf_add_ref(db, child);
if (db->db.db_data)
child->db_blkptr = (blkptr_t *)db->db.db_data + i;
else
child->db_blkptr = NULL;
dprintf_dbuf_bp(child, child->db_blkptr,
"changed db_blkptr to new indirect %s", "");
mutex_exit(&child->db_mtx);
}
bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
dbuf_rele(db, FTAG);
rw_exit(&dn->dn_struct_rwlock);
}
static void
free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
{
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
uint64_t bytesfreed = 0;
dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
for (int i = 0; i < num; i++, bp++) {
if (BP_IS_HOLE(bp))
continue;
bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
/*
* Save some useful information on the holes being
* punched, including logical size, type, and indirection
* level. Retaining birth time enables detection of when
* holes are punched for reducing the number of free
* records transmitted during a zfs send.
*/
uint64_t lsize = BP_GET_LSIZE(bp);
dmu_object_type_t type = BP_GET_TYPE(bp);
uint64_t lvl = BP_GET_LEVEL(bp);
bzero(bp, sizeof (blkptr_t));
if (spa_feature_is_active(dn->dn_objset->os_spa,
SPA_FEATURE_HOLE_BIRTH)) {
BP_SET_LSIZE(bp, lsize);
BP_SET_TYPE(bp, type);
BP_SET_LEVEL(bp, lvl);
BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
}
}
dnode_diduse_space(dn, -bytesfreed);
}
#ifdef ZFS_DEBUG
static void
free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
{
int off, num;
int i, err, epbs;
uint64_t txg = tx->tx_txg;
dnode_t *dn;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
off = start - (db->db_blkid * 1<<epbs);
num = end - start + 1;
ASSERT3U(off, >=, 0);
ASSERT3U(num, >=, 0);
ASSERT3U(db->db_level, >, 0);
ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
ASSERT(db->db_blkptr != NULL);
for (i = off; i < off+num; i++) {
uint64_t *buf;
dmu_buf_impl_t *child;
dbuf_dirty_record_t *dr;
int j;
ASSERT(db->db_level == 1);
rw_enter(&dn->dn_struct_rwlock, RW_READER);
err = dbuf_hold_impl(dn, db->db_level-1,
(db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
rw_exit(&dn->dn_struct_rwlock);
if (err == ENOENT)
continue;
ASSERT(err == 0);
ASSERT(child->db_level == 0);
dr = child->db_last_dirty;
while (dr && dr->dr_txg > txg)
dr = dr->dr_next;
ASSERT(dr == NULL || dr->dr_txg == txg);
/* data_old better be zeroed */
if (dr) {
buf = dr->dt.dl.dr_data->b_data;
for (j = 0; j < child->db.db_size >> 3; j++) {
if (buf[j] != 0) {
panic("freed data not zero: "
"child=%p i=%d off=%d num=%d\n",
(void *)child, i, off, num);
}
}
}
/*
* db_data better be zeroed unless it's dirty in a
* future txg.
*/
mutex_enter(&child->db_mtx);
buf = child->db.db_data;
if (buf != NULL && child->db_state != DB_FILL &&
child->db_last_dirty == NULL) {
for (j = 0; j < child->db.db_size >> 3; j++) {
if (buf[j] != 0) {
panic("freed data not zero: "
"child=%p i=%d off=%d num=%d\n",
(void *)child, i, off, num);
}
}
}
mutex_exit(&child->db_mtx);
dbuf_rele(child, FTAG);
}
DB_DNODE_EXIT(db);
}
#endif
/*
* We don't usually free the indirect blocks here. If in one txg we have a
* free_range and a write to the same indirect block, it's important that we
* preserve the hole's birth times. Therefore, we don't free any any indirect
* blocks in free_children(). If an indirect block happens to turn into all
* holes, it will be freed by dbuf_write_children_ready, which happens at a
* point in the syncing process where we know for certain the contents of the
* indirect block.
*
* However, if we're freeing a dnode, its space accounting must go to zero
* before we actually try to free the dnode, or we will trip an assertion. In
* addition, we know the case described above cannot occur, because the dnode is
* being freed. Therefore, we free the indirect blocks immediately in that
* case.
*/
static void
free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
boolean_t free_indirects, dmu_tx_t *tx)
{
dnode_t *dn;
blkptr_t *bp;
dmu_buf_impl_t *subdb;
uint64_t start, end, dbstart, dbend;
unsigned int epbs, shift, i;
/*
* There is a small possibility that this block will not be cached:
* 1 - if level > 1 and there are no children with level <= 1
* 2 - if this block was evicted since we read it from
* dmu_tx_hold_free().
*/
if (db->db_state != DB_CACHED)
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
/*
* If we modify this indirect block, and we are not freeing the
* dnode (!free_indirects), then this indirect block needs to get
* written to disk by dbuf_write(). If it is dirty, we know it will
* be written (otherwise, we would have incorrect on-disk state
* because the space would be freed but still referenced by the BP
* in this indirect block). Therefore we VERIFY that it is
* dirty.
*
* Our VERIFY covers some cases that do not actually have to be
* dirty, but the open-context code happens to dirty. E.g. if the
* blocks we are freeing are all holes, because in that case, we
* are only freeing part of this indirect block, so it is an
* ancestor of the first or last block to be freed. The first and
* last L1 indirect blocks are always dirtied by dnode_free_range().
*/
VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
dbuf_release_bp(db);
bp = db->db.db_data;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
ASSERT3U(epbs, <, 31);
shift = (db->db_level - 1) * epbs;
dbstart = db->db_blkid << epbs;
start = blkid >> shift;
if (dbstart < start) {
bp += start - dbstart;
} else {
start = dbstart;
}
dbend = ((db->db_blkid + 1) << epbs) - 1;
end = (blkid + nblks - 1) >> shift;
if (dbend <= end)
end = dbend;
ASSERT3U(start, <=, end);
if (db->db_level == 1) {
FREE_VERIFY(db, start, end, tx);
free_blocks(dn, bp, end-start+1, tx);
} else {
for (uint64_t id = start; id <= end; id++, bp++) {
if (BP_IS_HOLE(bp))
continue;
rw_enter(&dn->dn_struct_rwlock, RW_READER);
VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
id, TRUE, FALSE, FTAG, &subdb));
rw_exit(&dn->dn_struct_rwlock);
ASSERT3P(bp, ==, subdb->db_blkptr);
free_children(subdb, blkid, nblks, free_indirects, tx);
dbuf_rele(subdb, FTAG);
}
}
if (free_indirects) {
for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
ASSERT(BP_IS_HOLE(bp));
bzero(db->db.db_data, db->db.db_size);
free_blocks(dn, db->db_blkptr, 1, tx);
}
DB_DNODE_EXIT(db);
arc_buf_freeze(db->db_buf);
}
/*
* Traverse the indicated range of the provided file
* and "free" all the blocks contained there.
*/
static void
dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
boolean_t free_indirects, dmu_tx_t *tx)
{
blkptr_t *bp = dn->dn_phys->dn_blkptr;
int dnlevel = dn->dn_phys->dn_nlevels;
boolean_t trunc = B_FALSE;
if (blkid > dn->dn_phys->dn_maxblkid)
return;
ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
trunc = B_TRUE;
}
/* There are no indirect blocks in the object */
if (dnlevel == 1) {
if (blkid >= dn->dn_phys->dn_nblkptr) {
/* this range was never made persistent */
return;
}
ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
free_blocks(dn, bp + blkid, nblks, tx);
} else {
int shift = (dnlevel - 1) *
(dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
int start = blkid >> shift;
int end = (blkid + nblks - 1) >> shift;
dmu_buf_impl_t *db;
ASSERT(start < dn->dn_phys->dn_nblkptr);
bp += start;
for (int i = start; i <= end; i++, bp++) {
if (BP_IS_HOLE(bp))
continue;
rw_enter(&dn->dn_struct_rwlock, RW_READER);
VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
TRUE, FALSE, FTAG, &db));
rw_exit(&dn->dn_struct_rwlock);
free_children(db, blkid, nblks, free_indirects, tx);
dbuf_rele(db, FTAG);
}
}
/*
* Do not truncate the maxblkid if we are performing a raw
* receive. The raw receive sets the maxblkid manually and
* must not be overridden. Usually, the last DRR_FREE record
* will be at the maxblkid, because the source system sets
* the maxblkid when truncating. However, if the last block
* was freed by overwriting with zeros and being compressed
* away to a hole, the source system will generate a DRR_FREE
* record while leaving the maxblkid after the end of that
* record. In this case we need to leave the maxblkid as
* indicated in the DRR_OBJECT record, so that it matches the
* source system, ensuring that the cryptographic hashes will
* match.
*/
if (trunc && !dn->dn_objset->os_raw_receive) {
ASSERTV(uint64_t off);
dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
ASSERTV(off = (dn->dn_phys->dn_maxblkid + 1) *
(dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT));
ASSERT(off < dn->dn_phys->dn_maxblkid ||
dn->dn_phys->dn_maxblkid == 0 ||
dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
}
}
typedef struct dnode_sync_free_range_arg {
dnode_t *dsfra_dnode;
dmu_tx_t *dsfra_tx;
boolean_t dsfra_free_indirects;
} dnode_sync_free_range_arg_t;
static void
dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
{
dnode_sync_free_range_arg_t *dsfra = arg;
dnode_t *dn = dsfra->dsfra_dnode;
mutex_exit(&dn->dn_mtx);
dnode_sync_free_range_impl(dn, blkid, nblks,
dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
mutex_enter(&dn->dn_mtx);
}
/*
* Try to kick all the dnode's dbufs out of the cache...
*/
void
dnode_evict_dbufs(dnode_t *dn)
{
dmu_buf_impl_t *db_marker;
dmu_buf_impl_t *db, *db_next;
db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
mutex_enter(&dn->dn_dbufs_mtx);
for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
#ifdef DEBUG
DB_DNODE_ENTER(db);
ASSERT3P(DB_DNODE(db), ==, dn);
DB_DNODE_EXIT(db);
#endif /* DEBUG */
mutex_enter(&db->db_mtx);
if (db->db_state != DB_EVICTING &&
zfs_refcount_is_zero(&db->db_holds)) {
db_marker->db_level = db->db_level;
db_marker->db_blkid = db->db_blkid;
db_marker->db_state = DB_SEARCH;
avl_insert_here(&dn->dn_dbufs, db_marker, db,
AVL_BEFORE);
/*
* We need to use the "marker" dbuf rather than
* simply getting the next dbuf, because
* dbuf_destroy() may actually remove multiple dbufs.
* It can call itself recursively on the parent dbuf,
* which may also be removed from dn_dbufs. The code
* flow would look like:
*
* dbuf_destroy():
* dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
* if (!cacheable || pending_evict)
* dbuf_destroy()
*/
dbuf_destroy(db);
db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
avl_remove(&dn->dn_dbufs, db_marker);
} else {
db->db_pending_evict = TRUE;
mutex_exit(&db->db_mtx);
db_next = AVL_NEXT(&dn->dn_dbufs, db);
}
}
mutex_exit(&dn->dn_dbufs_mtx);
kmem_free(db_marker, sizeof (dmu_buf_impl_t));
dnode_evict_bonus(dn);
}
void
dnode_evict_bonus(dnode_t *dn)
{
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
if (dn->dn_bonus != NULL) {
if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
mutex_enter(&dn->dn_bonus->db_mtx);
dbuf_destroy(dn->dn_bonus);
dn->dn_bonus = NULL;
} else {
dn->dn_bonus->db_pending_evict = TRUE;
}
}
rw_exit(&dn->dn_struct_rwlock);
}
static void
dnode_undirty_dbufs(list_t *list)
{
dbuf_dirty_record_t *dr;
while ((dr = list_head(list))) {
dmu_buf_impl_t *db = dr->dr_dbuf;
uint64_t txg = dr->dr_txg;
if (db->db_level != 0)
dnode_undirty_dbufs(&dr->dt.di.dr_children);
mutex_enter(&db->db_mtx);
/* XXX - use dbuf_undirty()? */
list_remove(list, dr);
ASSERT(db->db_last_dirty == dr);
db->db_last_dirty = NULL;
db->db_dirtycnt -= 1;
if (db->db_level == 0) {
ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
dr->dt.dl.dr_data == db->db_buf);
dbuf_unoverride(dr);
} else {
mutex_destroy(&dr->dt.di.dr_mtx);
list_destroy(&dr->dt.di.dr_children);
}
kmem_free(dr, sizeof (dbuf_dirty_record_t));
dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
}
}
static void
dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
{
int txgoff = tx->tx_txg & TXG_MASK;
ASSERT(dmu_tx_is_syncing(tx));
/*
* Our contents should have been freed in dnode_sync() by the
* free range record inserted by the caller of dnode_free().
*/
ASSERT0(DN_USED_BYTES(dn->dn_phys));
ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
dnode_evict_dbufs(dn);
/*
* XXX - It would be nice to assert this, but we may still
* have residual holds from async evictions from the arc...
*
* zfs_obj_to_path() also depends on this being
* commented out.
*
* ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
*/
/* Undirty next bits */
dn->dn_next_nlevels[txgoff] = 0;
dn->dn_next_indblkshift[txgoff] = 0;
dn->dn_next_blksz[txgoff] = 0;
dn->dn_next_maxblkid[txgoff] = 0;
/* ASSERT(blkptrs are zero); */
ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
ASSERT(dn->dn_type != DMU_OT_NONE);
ASSERT(dn->dn_free_txg > 0);
if (dn->dn_allocated_txg != dn->dn_free_txg)
dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
dnode_free_interior_slots(dn);
mutex_enter(&dn->dn_mtx);
dn->dn_type = DMU_OT_NONE;
dn->dn_maxblkid = 0;
dn->dn_allocated_txg = 0;
dn->dn_free_txg = 0;
dn->dn_have_spill = B_FALSE;
dn->dn_num_slots = 1;
mutex_exit(&dn->dn_mtx);
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
/*
* Now that we've released our hold, the dnode may
* be evicted, so we mustn't access it.
*/
}
/*
* Write out the dnode's dirty buffers.
*/
void
dnode_sync(dnode_t *dn, dmu_tx_t *tx)
{
objset_t *os = dn->dn_objset;
dnode_phys_t *dnp = dn->dn_phys;
int txgoff = tx->tx_txg & TXG_MASK;
list_t *list = &dn->dn_dirty_records[txgoff];
ASSERTV(static const dnode_phys_t zerodn = { 0 });
boolean_t kill_spill = B_FALSE;
ASSERT(dmu_tx_is_syncing(tx));
ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
ASSERT(dnp->dn_type != DMU_OT_NONE ||
bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
DNODE_VERIFY(dn);
ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
/*
* Do user accounting if it is enabled and this is not
* an encrypted receive.
*/
if (dmu_objset_userused_enabled(os) &&
!DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
(!os->os_encrypted || !dmu_objset_is_receiving(os))) {
mutex_enter(&dn->dn_mtx);
dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
dn->dn_oldflags = dn->dn_phys->dn_flags;
dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
if (dmu_objset_userobjused_enabled(dn->dn_objset))
dn->dn_phys->dn_flags |=
DNODE_FLAG_USEROBJUSED_ACCOUNTED;
mutex_exit(&dn->dn_mtx);
dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
} else {
/* Once we account for it, we should always account for it */
ASSERT(!(dn->dn_phys->dn_flags &
DNODE_FLAG_USERUSED_ACCOUNTED));
ASSERT(!(dn->dn_phys->dn_flags &
DNODE_FLAG_USEROBJUSED_ACCOUNTED));
}
mutex_enter(&dn->dn_mtx);
if (dn->dn_allocated_txg == tx->tx_txg) {
/* The dnode is newly allocated or reallocated */
if (dnp->dn_type == DMU_OT_NONE) {
/* this is a first alloc, not a realloc */
dnp->dn_nlevels = 1;
dnp->dn_nblkptr = dn->dn_nblkptr;
}
dnp->dn_type = dn->dn_type;
dnp->dn_bonustype = dn->dn_bonustype;
dnp->dn_bonuslen = dn->dn_bonuslen;
}
dnp->dn_extra_slots = dn->dn_num_slots - 1;
ASSERT(dnp->dn_nlevels > 1 ||
BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
ASSERT(dnp->dn_nlevels < 2 ||
BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
if (dn->dn_next_type[txgoff] != 0) {
dnp->dn_type = dn->dn_type;
dn->dn_next_type[txgoff] = 0;
}
if (dn->dn_next_blksz[txgoff] != 0) {
ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
SPA_MINBLOCKSIZE) == 0);
ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
dn->dn_maxblkid == 0 || list_head(list) != NULL ||
dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
dnp->dn_datablkszsec ||
!range_tree_is_empty(dn->dn_free_ranges[txgoff]));
dnp->dn_datablkszsec =
dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
dn->dn_next_blksz[txgoff] = 0;
}
if (dn->dn_next_bonuslen[txgoff] != 0) {
if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
dnp->dn_bonuslen = 0;
else
dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
ASSERT(dnp->dn_bonuslen <=
DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
dn->dn_next_bonuslen[txgoff] = 0;
}
if (dn->dn_next_bonustype[txgoff] != 0) {
ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
dn->dn_next_bonustype[txgoff] = 0;
}
boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
dn->dn_free_txg <= tx->tx_txg;
/*
* Remove the spill block if we have been explicitly asked to
* remove it, or if the object is being removed.
*/
if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
kill_spill = B_TRUE;
dn->dn_rm_spillblk[txgoff] = 0;
}
if (dn->dn_next_indblkshift[txgoff] != 0) {
ASSERT(dnp->dn_nlevels == 1);
dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
dn->dn_next_indblkshift[txgoff] = 0;
}
/*
* Just take the live (open-context) values for checksum and compress.
* Strictly speaking it's a future leak, but nothing bad happens if we
* start using the new checksum or compress algorithm a little early.
*/
dnp->dn_checksum = dn->dn_checksum;
dnp->dn_compress = dn->dn_compress;
mutex_exit(&dn->dn_mtx);
if (kill_spill) {
free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
mutex_enter(&dn->dn_mtx);
dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
mutex_exit(&dn->dn_mtx);
}
/* process all the "freed" ranges in the file */
if (dn->dn_free_ranges[txgoff] != NULL) {
dnode_sync_free_range_arg_t dsfra;
dsfra.dsfra_dnode = dn;
dsfra.dsfra_tx = tx;
dsfra.dsfra_free_indirects = freeing_dnode;
if (freeing_dnode) {
ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
0, dn->dn_maxblkid + 1));
}
mutex_enter(&dn->dn_mtx);
range_tree_vacate(dn->dn_free_ranges[txgoff],
dnode_sync_free_range, &dsfra);
range_tree_destroy(dn->dn_free_ranges[txgoff]);
dn->dn_free_ranges[txgoff] = NULL;
mutex_exit(&dn->dn_mtx);
}
if (freeing_dnode) {
dn->dn_objset->os_freed_dnodes++;
dnode_sync_free(dn, tx);
return;
}
if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
mutex_enter(&ds->ds_lock);
ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] =
(void *)B_TRUE;
mutex_exit(&ds->ds_lock);
}
if (dn->dn_next_nlevels[txgoff]) {
dnode_increase_indirection(dn, tx);
dn->dn_next_nlevels[txgoff] = 0;
}
/*
* This must be done after dnode_sync_free_range()
* and dnode_increase_indirection(). See dnode_new_blkid()
* for an explanation of the high bit being set.
*/
if (dn->dn_next_maxblkid[txgoff]) {
mutex_enter(&dn->dn_mtx);
dnp->dn_maxblkid =
dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
dn->dn_next_maxblkid[txgoff] = 0;
mutex_exit(&dn->dn_mtx);
}
if (dn->dn_next_nblkptr[txgoff]) {
/* this should only happen on a realloc */
ASSERT(dn->dn_allocated_txg == tx->tx_txg);
if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
/* zero the new blkptrs we are gaining */
bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
sizeof (blkptr_t) *
(dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
#ifdef ZFS_DEBUG
} else {
int i;
ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
/* the blkptrs we are losing better be unallocated */
for (i = 0; i < dnp->dn_nblkptr; i++) {
if (i >= dn->dn_next_nblkptr[txgoff])
ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
}
#endif
}
mutex_enter(&dn->dn_mtx);
dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
dn->dn_next_nblkptr[txgoff] = 0;
mutex_exit(&dn->dn_mtx);
}
dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
ASSERT3P(list_head(list), ==, NULL);
dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
}
/*
* Although we have dropped our reference to the dnode, it
* can't be evicted until its written, and we haven't yet
* initiated the IO for the dnode's dbuf.
*/
}