/* * Implement fast Fletcher4 with AVX2 instructions. (x86_64) * * Use the 256-bit AVX2 SIMD instructions and registers to compute * Fletcher4 in four incremental 64-bit parallel accumulator streams, * and then combine the streams to form the final four checksum words. * * Copyright (C) 2015 Intel Corporation. * * Authors: * James Guilford * Jinshan Xiong * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if defined(HAVE_AVX) && defined(HAVE_AVX2) #include #include #include #include static void fletcher_4_avx2_init(fletcher_4_ctx_t *ctx) { bzero(ctx->avx, 4 * sizeof (zfs_fletcher_avx_t)); } static void fletcher_4_avx2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) { uint64_t A, B, C, D; A = ctx->avx[0].v[0] + ctx->avx[0].v[1] + ctx->avx[0].v[2] + ctx->avx[0].v[3]; B = 0 - ctx->avx[0].v[1] - 2 * ctx->avx[0].v[2] - 3 * ctx->avx[0].v[3] + 4 * ctx->avx[1].v[0] + 4 * ctx->avx[1].v[1] + 4 * ctx->avx[1].v[2] + 4 * ctx->avx[1].v[3]; C = ctx->avx[0].v[2] + 3 * ctx->avx[0].v[3] - 6 * ctx->avx[1].v[0] - 10 * ctx->avx[1].v[1] - 14 * ctx->avx[1].v[2] - 18 * ctx->avx[1].v[3] + 16 * ctx->avx[2].v[0] + 16 * ctx->avx[2].v[1] + 16 * ctx->avx[2].v[2] + 16 * ctx->avx[2].v[3]; D = 0 - ctx->avx[0].v[3] + 4 * ctx->avx[1].v[0] + 10 * ctx->avx[1].v[1] + 20 * ctx->avx[1].v[2] + 34 * ctx->avx[1].v[3] - 48 * ctx->avx[2].v[0] - 64 * ctx->avx[2].v[1] - 80 * ctx->avx[2].v[2] - 96 * ctx->avx[2].v[3] + 64 * ctx->avx[3].v[0] + 64 * ctx->avx[3].v[1] + 64 * ctx->avx[3].v[2] + 64 * ctx->avx[3].v[3]; ZIO_SET_CHECKSUM(zcp, A, B, C, D); } #define FLETCHER_4_AVX2_RESTORE_CTX(ctx) \ { \ asm volatile("vmovdqu %0, %%ymm0" :: "m" ((ctx)->avx[0])); \ asm volatile("vmovdqu %0, %%ymm1" :: "m" ((ctx)->avx[1])); \ asm volatile("vmovdqu %0, %%ymm2" :: "m" ((ctx)->avx[2])); \ asm volatile("vmovdqu %0, %%ymm3" :: "m" ((ctx)->avx[3])); \ } #define FLETCHER_4_AVX2_SAVE_CTX(ctx) \ { \ asm volatile("vmovdqu %%ymm0, %0" : "=m" ((ctx)->avx[0])); \ asm volatile("vmovdqu %%ymm1, %0" : "=m" ((ctx)->avx[1])); \ asm volatile("vmovdqu %%ymm2, %0" : "=m" ((ctx)->avx[2])); \ asm volatile("vmovdqu %%ymm3, %0" : "=m" ((ctx)->avx[3])); \ } static void fletcher_4_avx2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); kfpu_begin(); FLETCHER_4_AVX2_RESTORE_CTX(ctx); for (; ip < ipend; ip += 2) { asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip)); asm volatile("vpaddq %ymm4, %ymm0, %ymm0"); asm volatile("vpaddq %ymm0, %ymm1, %ymm1"); asm volatile("vpaddq %ymm1, %ymm2, %ymm2"); asm volatile("vpaddq %ymm2, %ymm3, %ymm3"); } FLETCHER_4_AVX2_SAVE_CTX(ctx); asm volatile("vzeroupper"); kfpu_end(); } static void fletcher_4_avx2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { static const zfs_fletcher_avx_t mask = { .v = { 0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B, 0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B } }; const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); kfpu_begin(); FLETCHER_4_AVX2_RESTORE_CTX(ctx); asm volatile("vmovdqu %0, %%ymm5" :: "m" (mask)); for (; ip < ipend; ip += 2) { asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip)); asm volatile("vpshufb %ymm5, %ymm4, %ymm4"); asm volatile("vpaddq %ymm4, %ymm0, %ymm0"); asm volatile("vpaddq %ymm0, %ymm1, %ymm1"); asm volatile("vpaddq %ymm1, %ymm2, %ymm2"); asm volatile("vpaddq %ymm2, %ymm3, %ymm3"); } FLETCHER_4_AVX2_SAVE_CTX(ctx); asm volatile("vzeroupper"); kfpu_end(); } static boolean_t fletcher_4_avx2_valid(void) { return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available()); } const fletcher_4_ops_t fletcher_4_avx2_ops = { .init_native = fletcher_4_avx2_init, .fini_native = fletcher_4_avx2_fini, .compute_native = fletcher_4_avx2_native, .init_byteswap = fletcher_4_avx2_init, .fini_byteswap = fletcher_4_avx2_fini, .compute_byteswap = fletcher_4_avx2_byteswap, .valid = fletcher_4_avx2_valid, .name = "avx2" }; #endif /* defined(HAVE_AVX) && defined(HAVE_AVX2) */