776 lines
19 KiB
C
776 lines
19 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <sys/zfs_context.h>
|
||
|
#include <sys/dmu.h>
|
||
|
#include <sys/avl.h>
|
||
|
#include <sys/zap.h>
|
||
|
#include <sys/refcount.h>
|
||
|
#include <sys/nvpair.h>
|
||
|
#ifdef _KERNEL
|
||
|
#include <sys/sid.h>
|
||
|
#include <sys/zfs_vfsops.h>
|
||
|
#include <sys/zfs_znode.h>
|
||
|
#endif
|
||
|
#include <sys/zfs_fuid.h>
|
||
|
|
||
|
/*
|
||
|
* FUID Domain table(s).
|
||
|
*
|
||
|
* The FUID table is stored as a packed nvlist of an array
|
||
|
* of nvlists which contain an index, domain string and offset
|
||
|
*
|
||
|
* During file system initialization the nvlist(s) are read and
|
||
|
* two AVL trees are created. One tree is keyed by the index number
|
||
|
* and the other by the domain string. Nodes are never removed from
|
||
|
* trees, but new entries may be added. If a new entry is added then
|
||
|
* the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
|
||
|
* be responsible for calling zfs_fuid_sync() to sync the changes to disk.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define FUID_IDX "fuid_idx"
|
||
|
#define FUID_DOMAIN "fuid_domain"
|
||
|
#define FUID_OFFSET "fuid_offset"
|
||
|
#define FUID_NVP_ARRAY "fuid_nvlist"
|
||
|
|
||
|
typedef struct fuid_domain {
|
||
|
avl_node_t f_domnode;
|
||
|
avl_node_t f_idxnode;
|
||
|
ksiddomain_t *f_ksid;
|
||
|
uint64_t f_idx;
|
||
|
} fuid_domain_t;
|
||
|
|
||
|
static char *nulldomain = "";
|
||
|
|
||
|
/*
|
||
|
* Compare two indexes.
|
||
|
*/
|
||
|
static int
|
||
|
idx_compare(const void *arg1, const void *arg2)
|
||
|
{
|
||
|
const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
|
||
|
const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
|
||
|
|
||
|
return (AVL_CMP(node1->f_idx, node2->f_idx));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compare two domain strings.
|
||
|
*/
|
||
|
static int
|
||
|
domain_compare(const void *arg1, const void *arg2)
|
||
|
{
|
||
|
const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
|
||
|
const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
|
||
|
int val;
|
||
|
|
||
|
val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
|
||
|
|
||
|
return (AVL_ISIGN(val));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
|
||
|
{
|
||
|
avl_create(idx_tree, idx_compare,
|
||
|
sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
|
||
|
avl_create(domain_tree, domain_compare,
|
||
|
sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* load initial fuid domain and idx trees. This function is used by
|
||
|
* both the kernel and zdb.
|
||
|
*/
|
||
|
uint64_t
|
||
|
zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
|
||
|
avl_tree_t *domain_tree)
|
||
|
{
|
||
|
dmu_buf_t *db;
|
||
|
uint64_t fuid_size;
|
||
|
|
||
|
ASSERT(fuid_obj != 0);
|
||
|
VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
|
||
|
FTAG, &db));
|
||
|
fuid_size = *(uint64_t *)db->db_data;
|
||
|
dmu_buf_rele(db, FTAG);
|
||
|
|
||
|
if (fuid_size) {
|
||
|
nvlist_t **fuidnvp;
|
||
|
nvlist_t *nvp = NULL;
|
||
|
uint_t count;
|
||
|
char *packed;
|
||
|
int i;
|
||
|
|
||
|
packed = kmem_alloc(fuid_size, KM_SLEEP);
|
||
|
VERIFY(dmu_read(os, fuid_obj, 0,
|
||
|
fuid_size, packed, DMU_READ_PREFETCH) == 0);
|
||
|
VERIFY(nvlist_unpack(packed, fuid_size,
|
||
|
&nvp, 0) == 0);
|
||
|
VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
|
||
|
&fuidnvp, &count) == 0);
|
||
|
|
||
|
for (i = 0; i != count; i++) {
|
||
|
fuid_domain_t *domnode;
|
||
|
char *domain;
|
||
|
uint64_t idx;
|
||
|
|
||
|
VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
|
||
|
&domain) == 0);
|
||
|
VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
|
||
|
&idx) == 0);
|
||
|
|
||
|
domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
|
||
|
|
||
|
domnode->f_idx = idx;
|
||
|
domnode->f_ksid = ksid_lookupdomain(domain);
|
||
|
avl_add(idx_tree, domnode);
|
||
|
avl_add(domain_tree, domnode);
|
||
|
}
|
||
|
nvlist_free(nvp);
|
||
|
kmem_free(packed, fuid_size);
|
||
|
}
|
||
|
return (fuid_size);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
|
||
|
{
|
||
|
fuid_domain_t *domnode;
|
||
|
void *cookie;
|
||
|
|
||
|
cookie = NULL;
|
||
|
while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
|
||
|
ksiddomain_rele(domnode->f_ksid);
|
||
|
|
||
|
avl_destroy(domain_tree);
|
||
|
cookie = NULL;
|
||
|
while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
|
||
|
kmem_free(domnode, sizeof (fuid_domain_t));
|
||
|
avl_destroy(idx_tree);
|
||
|
}
|
||
|
|
||
|
char *
|
||
|
zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
|
||
|
{
|
||
|
fuid_domain_t searchnode, *findnode;
|
||
|
avl_index_t loc;
|
||
|
|
||
|
searchnode.f_idx = idx;
|
||
|
|
||
|
findnode = avl_find(idx_tree, &searchnode, &loc);
|
||
|
|
||
|
return (findnode ? findnode->f_ksid->kd_name : nulldomain);
|
||
|
}
|
||
|
|
||
|
#ifdef _KERNEL
|
||
|
/*
|
||
|
* Load the fuid table(s) into memory.
|
||
|
*/
|
||
|
static void
|
||
|
zfs_fuid_init(zfsvfs_t *zfsvfs)
|
||
|
{
|
||
|
rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
|
||
|
|
||
|
if (zfsvfs->z_fuid_loaded) {
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
|
||
|
|
||
|
(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
|
||
|
ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
|
||
|
if (zfsvfs->z_fuid_obj != 0) {
|
||
|
zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
|
||
|
zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
|
||
|
&zfsvfs->z_fuid_domain);
|
||
|
}
|
||
|
|
||
|
zfsvfs->z_fuid_loaded = B_TRUE;
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* sync out AVL trees to persistent storage.
|
||
|
*/
|
||
|
void
|
||
|
zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
|
||
|
{
|
||
|
nvlist_t *nvp;
|
||
|
nvlist_t **fuids;
|
||
|
size_t nvsize = 0;
|
||
|
char *packed;
|
||
|
dmu_buf_t *db;
|
||
|
fuid_domain_t *domnode;
|
||
|
int numnodes;
|
||
|
int i;
|
||
|
|
||
|
if (!zfsvfs->z_fuid_dirty) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
|
||
|
|
||
|
/*
|
||
|
* First see if table needs to be created?
|
||
|
*/
|
||
|
if (zfsvfs->z_fuid_obj == 0) {
|
||
|
zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
|
||
|
DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
|
||
|
sizeof (uint64_t), tx);
|
||
|
VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
|
||
|
ZFS_FUID_TABLES, sizeof (uint64_t), 1,
|
||
|
&zfsvfs->z_fuid_obj, tx) == 0);
|
||
|
}
|
||
|
|
||
|
VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
||
|
|
||
|
numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
|
||
|
fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
|
||
|
for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
|
||
|
domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
|
||
|
VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
||
|
VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
|
||
|
domnode->f_idx) == 0);
|
||
|
VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
|
||
|
VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
|
||
|
domnode->f_ksid->kd_name) == 0);
|
||
|
}
|
||
|
VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
|
||
|
fuids, numnodes) == 0);
|
||
|
for (i = 0; i != numnodes; i++)
|
||
|
nvlist_free(fuids[i]);
|
||
|
kmem_free(fuids, numnodes * sizeof (void *));
|
||
|
VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
|
||
|
packed = kmem_alloc(nvsize, KM_SLEEP);
|
||
|
VERIFY(nvlist_pack(nvp, &packed, &nvsize,
|
||
|
NV_ENCODE_XDR, KM_SLEEP) == 0);
|
||
|
nvlist_free(nvp);
|
||
|
zfsvfs->z_fuid_size = nvsize;
|
||
|
dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
|
||
|
zfsvfs->z_fuid_size, packed, tx);
|
||
|
kmem_free(packed, zfsvfs->z_fuid_size);
|
||
|
VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
|
||
|
FTAG, &db));
|
||
|
dmu_buf_will_dirty(db, tx);
|
||
|
*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
|
||
|
dmu_buf_rele(db, FTAG);
|
||
|
|
||
|
zfsvfs->z_fuid_dirty = B_FALSE;
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Query domain table for a given domain.
|
||
|
*
|
||
|
* If domain isn't found and addok is set, it is added to AVL trees and
|
||
|
* the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be
|
||
|
* necessary for the caller or another thread to detect the dirty table
|
||
|
* and sync out the changes.
|
||
|
*/
|
||
|
int
|
||
|
zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
|
||
|
char **retdomain, boolean_t addok)
|
||
|
{
|
||
|
fuid_domain_t searchnode, *findnode;
|
||
|
avl_index_t loc;
|
||
|
krw_t rw = RW_READER;
|
||
|
|
||
|
/*
|
||
|
* If the dummy "nobody" domain then return an index of 0
|
||
|
* to cause the created FUID to be a standard POSIX id
|
||
|
* for the user nobody.
|
||
|
*/
|
||
|
if (domain[0] == '\0') {
|
||
|
if (retdomain)
|
||
|
*retdomain = nulldomain;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
searchnode.f_ksid = ksid_lookupdomain(domain);
|
||
|
if (retdomain)
|
||
|
*retdomain = searchnode.f_ksid->kd_name;
|
||
|
if (!zfsvfs->z_fuid_loaded)
|
||
|
zfs_fuid_init(zfsvfs);
|
||
|
|
||
|
retry:
|
||
|
rw_enter(&zfsvfs->z_fuid_lock, rw);
|
||
|
findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
|
||
|
|
||
|
if (findnode) {
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
ksiddomain_rele(searchnode.f_ksid);
|
||
|
return (findnode->f_idx);
|
||
|
} else if (addok) {
|
||
|
fuid_domain_t *domnode;
|
||
|
uint64_t retidx;
|
||
|
|
||
|
if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
rw = RW_WRITER;
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
|
||
|
domnode->f_ksid = searchnode.f_ksid;
|
||
|
|
||
|
retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
|
||
|
|
||
|
avl_add(&zfsvfs->z_fuid_domain, domnode);
|
||
|
avl_add(&zfsvfs->z_fuid_idx, domnode);
|
||
|
zfsvfs->z_fuid_dirty = B_TRUE;
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
return (retidx);
|
||
|
} else {
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
return (-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Query domain table by index, returning domain string
|
||
|
*
|
||
|
* Returns a pointer from an avl node of the domain string.
|
||
|
*
|
||
|
*/
|
||
|
const char *
|
||
|
zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
|
||
|
{
|
||
|
char *domain;
|
||
|
|
||
|
if (idx == 0 || !zfsvfs->z_use_fuids)
|
||
|
return (NULL);
|
||
|
|
||
|
if (!zfsvfs->z_fuid_loaded)
|
||
|
zfs_fuid_init(zfsvfs);
|
||
|
|
||
|
rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
|
||
|
|
||
|
if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
|
||
|
domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
|
||
|
else
|
||
|
domain = nulldomain;
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
|
||
|
ASSERT(domain);
|
||
|
return (domain);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
|
||
|
{
|
||
|
*uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOI(zp)->i_uid),
|
||
|
cr, ZFS_OWNER);
|
||
|
*gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOI(zp)->i_gid),
|
||
|
cr, ZFS_GROUP);
|
||
|
}
|
||
|
|
||
|
uid_t
|
||
|
zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
|
||
|
cred_t *cr, zfs_fuid_type_t type)
|
||
|
{
|
||
|
#ifdef HAVE_KSID
|
||
|
uint32_t index = FUID_INDEX(fuid);
|
||
|
const char *domain;
|
||
|
uid_t id;
|
||
|
|
||
|
if (index == 0)
|
||
|
return (fuid);
|
||
|
|
||
|
domain = zfs_fuid_find_by_idx(zfsvfs, index);
|
||
|
ASSERT(domain != NULL);
|
||
|
|
||
|
if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
|
||
|
(void) kidmap_getuidbysid(crgetzone(cr), domain,
|
||
|
FUID_RID(fuid), &id);
|
||
|
} else {
|
||
|
(void) kidmap_getgidbysid(crgetzone(cr), domain,
|
||
|
FUID_RID(fuid), &id);
|
||
|
}
|
||
|
return (id);
|
||
|
#else
|
||
|
/*
|
||
|
* The Linux port only supports POSIX IDs, use the passed id.
|
||
|
*/
|
||
|
return (fuid);
|
||
|
#endif /* HAVE_KSID */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a FUID node to the list of fuid's being created for this
|
||
|
* ACL
|
||
|
*
|
||
|
* If ACL has multiple domains, then keep only one copy of each unique
|
||
|
* domain.
|
||
|
*/
|
||
|
void
|
||
|
zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
|
||
|
uint64_t idx, uint64_t id, zfs_fuid_type_t type)
|
||
|
{
|
||
|
zfs_fuid_t *fuid;
|
||
|
zfs_fuid_domain_t *fuid_domain;
|
||
|
zfs_fuid_info_t *fuidp;
|
||
|
uint64_t fuididx;
|
||
|
boolean_t found = B_FALSE;
|
||
|
|
||
|
if (*fuidpp == NULL)
|
||
|
*fuidpp = zfs_fuid_info_alloc();
|
||
|
|
||
|
fuidp = *fuidpp;
|
||
|
/*
|
||
|
* First find fuid domain index in linked list
|
||
|
*
|
||
|
* If one isn't found then create an entry.
|
||
|
*/
|
||
|
|
||
|
for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
|
||
|
fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
|
||
|
fuid_domain), fuididx++) {
|
||
|
if (idx == fuid_domain->z_domidx) {
|
||
|
found = B_TRUE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!found) {
|
||
|
fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
|
||
|
fuid_domain->z_domain = domain;
|
||
|
fuid_domain->z_domidx = idx;
|
||
|
list_insert_tail(&fuidp->z_domains, fuid_domain);
|
||
|
fuidp->z_domain_str_sz += strlen(domain) + 1;
|
||
|
fuidp->z_domain_cnt++;
|
||
|
}
|
||
|
|
||
|
if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
|
||
|
|
||
|
/*
|
||
|
* Now allocate fuid entry and add it on the end of the list
|
||
|
*/
|
||
|
|
||
|
fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
|
||
|
fuid->z_id = id;
|
||
|
fuid->z_domidx = idx;
|
||
|
fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
|
||
|
|
||
|
list_insert_tail(&fuidp->z_fuids, fuid);
|
||
|
fuidp->z_fuid_cnt++;
|
||
|
} else {
|
||
|
if (type == ZFS_OWNER)
|
||
|
fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
|
||
|
else
|
||
|
fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef HAVE_KSID
|
||
|
/*
|
||
|
* Create a file system FUID, based on information in the users cred
|
||
|
*
|
||
|
* If cred contains KSID_OWNER then it should be used to determine
|
||
|
* the uid otherwise cred's uid will be used. By default cred's gid
|
||
|
* is used unless it's an ephemeral ID in which case KSID_GROUP will
|
||
|
* be used if it exists.
|
||
|
*/
|
||
|
uint64_t
|
||
|
zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
|
||
|
cred_t *cr, zfs_fuid_info_t **fuidp)
|
||
|
{
|
||
|
uint64_t idx;
|
||
|
ksid_t *ksid;
|
||
|
uint32_t rid;
|
||
|
char *kdomain;
|
||
|
const char *domain;
|
||
|
uid_t id;
|
||
|
|
||
|
VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
|
||
|
|
||
|
ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
|
||
|
|
||
|
if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
|
||
|
id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
|
||
|
|
||
|
if (IS_EPHEMERAL(id))
|
||
|
return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
|
||
|
|
||
|
return ((uint64_t)id);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ksid is present and FUID is supported
|
||
|
*/
|
||
|
id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
|
||
|
|
||
|
if (!IS_EPHEMERAL(id))
|
||
|
return ((uint64_t)id);
|
||
|
|
||
|
if (type == ZFS_GROUP)
|
||
|
id = ksid_getid(ksid);
|
||
|
|
||
|
rid = ksid_getrid(ksid);
|
||
|
domain = ksid_getdomain(ksid);
|
||
|
|
||
|
idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
|
||
|
|
||
|
zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
|
||
|
|
||
|
return (FUID_ENCODE(idx, rid));
|
||
|
}
|
||
|
#endif /* HAVE_KSID */
|
||
|
|
||
|
/*
|
||
|
* Create a file system FUID for an ACL ace
|
||
|
* or a chown/chgrp of the file.
|
||
|
* This is similar to zfs_fuid_create_cred, except that
|
||
|
* we can't find the domain + rid information in the
|
||
|
* cred. Instead we have to query Winchester for the
|
||
|
* domain and rid.
|
||
|
*
|
||
|
* During replay operations the domain+rid information is
|
||
|
* found in the zfs_fuid_info_t that the replay code has
|
||
|
* attached to the zfsvfs of the file system.
|
||
|
*/
|
||
|
uint64_t
|
||
|
zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
|
||
|
zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
|
||
|
{
|
||
|
#ifdef HAVE_KSID
|
||
|
const char *domain;
|
||
|
char *kdomain;
|
||
|
uint32_t fuid_idx = FUID_INDEX(id);
|
||
|
uint32_t rid;
|
||
|
idmap_stat status;
|
||
|
uint64_t idx = 0;
|
||
|
zfs_fuid_t *zfuid = NULL;
|
||
|
zfs_fuid_info_t *fuidp = NULL;
|
||
|
|
||
|
/*
|
||
|
* If POSIX ID, or entry is already a FUID then
|
||
|
* just return the id
|
||
|
*
|
||
|
* We may also be handed an already FUID'ized id via
|
||
|
* chmod.
|
||
|
*/
|
||
|
|
||
|
if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
|
||
|
return (id);
|
||
|
|
||
|
if (zfsvfs->z_replay) {
|
||
|
fuidp = zfsvfs->z_fuid_replay;
|
||
|
|
||
|
/*
|
||
|
* If we are passed an ephemeral id, but no
|
||
|
* fuid_info was logged then return NOBODY.
|
||
|
* This is most likely a result of idmap service
|
||
|
* not being available.
|
||
|
*/
|
||
|
if (fuidp == NULL)
|
||
|
return (UID_NOBODY);
|
||
|
|
||
|
VERIFY3U(type, >=, ZFS_OWNER);
|
||
|
VERIFY3U(type, <=, ZFS_ACE_GROUP);
|
||
|
|
||
|
switch (type) {
|
||
|
case ZFS_ACE_USER:
|
||
|
case ZFS_ACE_GROUP:
|
||
|
zfuid = list_head(&fuidp->z_fuids);
|
||
|
rid = FUID_RID(zfuid->z_logfuid);
|
||
|
idx = FUID_INDEX(zfuid->z_logfuid);
|
||
|
break;
|
||
|
case ZFS_OWNER:
|
||
|
rid = FUID_RID(fuidp->z_fuid_owner);
|
||
|
idx = FUID_INDEX(fuidp->z_fuid_owner);
|
||
|
break;
|
||
|
case ZFS_GROUP:
|
||
|
rid = FUID_RID(fuidp->z_fuid_group);
|
||
|
idx = FUID_INDEX(fuidp->z_fuid_group);
|
||
|
break;
|
||
|
};
|
||
|
domain = fuidp->z_domain_table[idx - 1];
|
||
|
} else {
|
||
|
if (type == ZFS_OWNER || type == ZFS_ACE_USER)
|
||
|
status = kidmap_getsidbyuid(crgetzone(cr), id,
|
||
|
&domain, &rid);
|
||
|
else
|
||
|
status = kidmap_getsidbygid(crgetzone(cr), id,
|
||
|
&domain, &rid);
|
||
|
|
||
|
if (status != 0) {
|
||
|
/*
|
||
|
* When returning nobody we will need to
|
||
|
* make a dummy fuid table entry for logging
|
||
|
* purposes.
|
||
|
*/
|
||
|
rid = UID_NOBODY;
|
||
|
domain = nulldomain;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
|
||
|
|
||
|
if (!zfsvfs->z_replay)
|
||
|
zfs_fuid_node_add(fuidpp, kdomain,
|
||
|
rid, idx, id, type);
|
||
|
else if (zfuid != NULL) {
|
||
|
list_remove(&fuidp->z_fuids, zfuid);
|
||
|
kmem_free(zfuid, sizeof (zfs_fuid_t));
|
||
|
}
|
||
|
return (FUID_ENCODE(idx, rid));
|
||
|
#else
|
||
|
/*
|
||
|
* The Linux port only supports POSIX IDs, use the passed id.
|
||
|
*/
|
||
|
return (id);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_fuid_destroy(zfsvfs_t *zfsvfs)
|
||
|
{
|
||
|
rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
|
||
|
if (!zfsvfs->z_fuid_loaded) {
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
return;
|
||
|
}
|
||
|
zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
|
||
|
rw_exit(&zfsvfs->z_fuid_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate zfs_fuid_info for tracking FUIDs created during
|
||
|
* zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
|
||
|
*/
|
||
|
zfs_fuid_info_t *
|
||
|
zfs_fuid_info_alloc(void)
|
||
|
{
|
||
|
zfs_fuid_info_t *fuidp;
|
||
|
|
||
|
fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
|
||
|
list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
|
||
|
offsetof(zfs_fuid_domain_t, z_next));
|
||
|
list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
|
||
|
offsetof(zfs_fuid_t, z_next));
|
||
|
return (fuidp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Release all memory associated with zfs_fuid_info_t
|
||
|
*/
|
||
|
void
|
||
|
zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
|
||
|
{
|
||
|
zfs_fuid_t *zfuid;
|
||
|
zfs_fuid_domain_t *zdomain;
|
||
|
|
||
|
while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
|
||
|
list_remove(&fuidp->z_fuids, zfuid);
|
||
|
kmem_free(zfuid, sizeof (zfs_fuid_t));
|
||
|
}
|
||
|
|
||
|
if (fuidp->z_domain_table != NULL)
|
||
|
kmem_free(fuidp->z_domain_table,
|
||
|
(sizeof (char *)) * fuidp->z_domain_cnt);
|
||
|
|
||
|
while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
|
||
|
list_remove(&fuidp->z_domains, zdomain);
|
||
|
kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
|
||
|
}
|
||
|
|
||
|
kmem_free(fuidp, sizeof (zfs_fuid_info_t));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check to see if id is a groupmember. If cred
|
||
|
* has ksid info then sidlist is checked first
|
||
|
* and if still not found then POSIX groups are checked
|
||
|
*
|
||
|
* Will use a straight FUID compare when possible.
|
||
|
*/
|
||
|
boolean_t
|
||
|
zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
|
||
|
{
|
||
|
#ifdef HAVE_KSID
|
||
|
ksid_t *ksid = crgetsid(cr, KSID_GROUP);
|
||
|
ksidlist_t *ksidlist = crgetsidlist(cr);
|
||
|
uid_t gid;
|
||
|
|
||
|
if (ksid && ksidlist) {
|
||
|
int i;
|
||
|
ksid_t *ksid_groups;
|
||
|
uint32_t idx = FUID_INDEX(id);
|
||
|
uint32_t rid = FUID_RID(id);
|
||
|
|
||
|
ksid_groups = ksidlist->ksl_sids;
|
||
|
|
||
|
for (i = 0; i != ksidlist->ksl_nsid; i++) {
|
||
|
if (idx == 0) {
|
||
|
if (id != IDMAP_WK_CREATOR_GROUP_GID &&
|
||
|
id == ksid_groups[i].ks_id) {
|
||
|
return (B_TRUE);
|
||
|
}
|
||
|
} else {
|
||
|
const char *domain;
|
||
|
|
||
|
domain = zfs_fuid_find_by_idx(zfsvfs, idx);
|
||
|
ASSERT(domain != NULL);
|
||
|
|
||
|
if (strcmp(domain,
|
||
|
IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
|
||
|
return (B_FALSE);
|
||
|
|
||
|
if ((strcmp(domain,
|
||
|
ksid_groups[i].ks_domain->kd_name) == 0) &&
|
||
|
rid == ksid_groups[i].ks_rid)
|
||
|
return (B_TRUE);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Not found in ksidlist, check posix groups
|
||
|
*/
|
||
|
gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
|
||
|
return (groupmember(gid, cr));
|
||
|
#else
|
||
|
return (B_TRUE);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
|
||
|
{
|
||
|
if (zfsvfs->z_fuid_obj == 0) {
|
||
|
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
|
||
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
|
||
|
FUID_SIZE_ESTIMATE(zfsvfs));
|
||
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
|
||
|
} else {
|
||
|
dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
|
||
|
dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
|
||
|
FUID_SIZE_ESTIMATE(zfsvfs));
|
||
|
}
|
||
|
}
|
||
|
#endif
|