zfs-builds-mm/zfs-0.8.5/module/icp/algs/sha2/sha2.c

957 lines
33 KiB
C
Raw Normal View History

2020-10-22 13:48:46 +02:00
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 2013 Saso Kiselkov. All rights reserved.
*/
/*
* The basic framework for this code came from the reference
* implementation for MD5. That implementation is Copyright (C)
* 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD5 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*
* NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
* standard, available at
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
* Not as fast as one would like -- further optimizations are encouraged
* and appreciated.
*/
#include <sys/zfs_context.h>
#define _SHA2_IMPL
#include <sys/sha2.h>
#include <sha2/sha2_consts.h>
#define _RESTRICT_KYWD
#ifdef _LITTLE_ENDIAN
#include <sys/byteorder.h>
#define HAVE_HTONL
#endif
#include <sys/isa_defs.h> /* for _ILP32 */
static void Encode(uint8_t *, uint32_t *, size_t);
static void Encode64(uint8_t *, uint64_t *, size_t);
/* userspace only supports the generic version */
#if defined(__amd64) && defined(_KERNEL)
#define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
#define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
#else
static void SHA256Transform(SHA2_CTX *, const uint8_t *);
static void SHA512Transform(SHA2_CTX *, const uint8_t *);
#endif /* __amd64 && _KERNEL */
static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
/*
* The low-level checksum routines use a lot of stack space. On systems where
* small stacks are enforced (like 32-bit kernel builds), insert compiler memory
* barriers to reduce stack frame size. This can reduce the SHA512Transform()
* stack frame usage from 3k to <1k on ARM32, for example.
*/
#if defined(_ILP32) || defined(__powerpc) /* small stack */
#define SMALL_STACK_MEMORY_BARRIER asm volatile("": : :"memory");
#else
#define SMALL_STACK_MEMORY_BARRIER
#endif
/* Ch and Maj are the basic SHA2 functions. */
#define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d)))
#define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
/* Rotates x right n bits. */
#define ROTR(x, n) \
(((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
/* Shift x right n bits */
#define SHR(x, n) ((x) >> (n))
/* SHA256 Functions */
#define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
#define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
#define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
#define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
#define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \
T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \
d += T1; \
T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \
h = T1 + T2
/* SHA384/512 Functions */
#define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
#define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
#define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
#define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
#define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \
T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \
d += T1; \
T2 = BIGSIGMA0(a) + Maj(a, b, c); \
h = T1 + T2; \
SMALL_STACK_MEMORY_BARRIER;
/*
* sparc optimization:
*
* on the sparc, we can load big endian 32-bit data easily. note that
* special care must be taken to ensure the address is 32-bit aligned.
* in the interest of speed, we don't check to make sure, since
* careful programming can guarantee this for us.
*/
#if defined(_BIG_ENDIAN)
#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
#define LOAD_BIG_64(addr) (*(uint64_t *)(addr))
#elif defined(HAVE_HTONL)
#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
#define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr)))
#else
/* little endian -- will work on big endian, but slowly */
#define LOAD_BIG_32(addr) \
(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
#define LOAD_BIG_64(addr) \
(((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \
((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \
((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \
((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
#endif /* _BIG_ENDIAN */
#if !defined(__amd64) || !defined(_KERNEL)
/* SHA256 Transform */
static void
SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
{
uint32_t a = ctx->state.s32[0];
uint32_t b = ctx->state.s32[1];
uint32_t c = ctx->state.s32[2];
uint32_t d = ctx->state.s32[3];
uint32_t e = ctx->state.s32[4];
uint32_t f = ctx->state.s32[5];
uint32_t g = ctx->state.s32[6];
uint32_t h = ctx->state.s32[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
uint32_t T1, T2;
#if defined(__sparc)
static const uint32_t sha256_consts[] = {
SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
SHA256_CONST_63
};
#endif /* __sparc */
if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
blk = (uint8_t *)ctx->buf_un.buf32;
}
/* LINTED E_BAD_PTR_CAST_ALIGN */
w0 = LOAD_BIG_32(blk + 4 * 0);
SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w1 = LOAD_BIG_32(blk + 4 * 1);
SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w2 = LOAD_BIG_32(blk + 4 * 2);
SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w3 = LOAD_BIG_32(blk + 4 * 3);
SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w4 = LOAD_BIG_32(blk + 4 * 4);
SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w5 = LOAD_BIG_32(blk + 4 * 5);
SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w6 = LOAD_BIG_32(blk + 4 * 6);
SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w7 = LOAD_BIG_32(blk + 4 * 7);
SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w8 = LOAD_BIG_32(blk + 4 * 8);
SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w9 = LOAD_BIG_32(blk + 4 * 9);
SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w10 = LOAD_BIG_32(blk + 4 * 10);
SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w11 = LOAD_BIG_32(blk + 4 * 11);
SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w12 = LOAD_BIG_32(blk + 4 * 12);
SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w13 = LOAD_BIG_32(blk + 4 * 13);
SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w14 = LOAD_BIG_32(blk + 4 * 14);
SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w15 = LOAD_BIG_32(blk + 4 * 15);
SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
ctx->state.s32[0] += a;
ctx->state.s32[1] += b;
ctx->state.s32[2] += c;
ctx->state.s32[3] += d;
ctx->state.s32[4] += e;
ctx->state.s32[5] += f;
ctx->state.s32[6] += g;
ctx->state.s32[7] += h;
}
/* SHA384 and SHA512 Transform */
static void
SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
{
uint64_t a = ctx->state.s64[0];
uint64_t b = ctx->state.s64[1];
uint64_t c = ctx->state.s64[2];
uint64_t d = ctx->state.s64[3];
uint64_t e = ctx->state.s64[4];
uint64_t f = ctx->state.s64[5];
uint64_t g = ctx->state.s64[6];
uint64_t h = ctx->state.s64[7];
uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
uint64_t T1, T2;
#if defined(__sparc)
static const uint64_t sha512_consts[] = {
SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
SHA512_CONST_78, SHA512_CONST_79
};
#endif /* __sparc */
if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */
bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64));
blk = (uint8_t *)ctx->buf_un.buf64;
}
/* LINTED E_BAD_PTR_CAST_ALIGN */
w0 = LOAD_BIG_64(blk + 8 * 0);
SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w1 = LOAD_BIG_64(blk + 8 * 1);
SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w2 = LOAD_BIG_64(blk + 8 * 2);
SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w3 = LOAD_BIG_64(blk + 8 * 3);
SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w4 = LOAD_BIG_64(blk + 8 * 4);
SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w5 = LOAD_BIG_64(blk + 8 * 5);
SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w6 = LOAD_BIG_64(blk + 8 * 6);
SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w7 = LOAD_BIG_64(blk + 8 * 7);
SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w8 = LOAD_BIG_64(blk + 8 * 8);
SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w9 = LOAD_BIG_64(blk + 8 * 9);
SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w10 = LOAD_BIG_64(blk + 8 * 10);
SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w11 = LOAD_BIG_64(blk + 8 * 11);
SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w12 = LOAD_BIG_64(blk + 8 * 12);
SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w13 = LOAD_BIG_64(blk + 8 * 13);
SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w14 = LOAD_BIG_64(blk + 8 * 14);
SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w15 = LOAD_BIG_64(blk + 8 * 15);
SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
ctx->state.s64[0] += a;
ctx->state.s64[1] += b;
ctx->state.s64[2] += c;
ctx->state.s64[3] += d;
ctx->state.s64[4] += e;
ctx->state.s64[5] += f;
ctx->state.s64[6] += g;
ctx->state.s64[7] += h;
}
#endif /* !__amd64 || !_KERNEL */
/*
* Encode()
*
* purpose: to convert a list of numbers from little endian to big endian
* input: uint8_t * : place to store the converted big endian numbers
* uint32_t * : place to get numbers to convert from
* size_t : the length of the input in bytes
* output: void
*/
static void
Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
size_t len)
{
size_t i, j;
#if defined(__sparc)
if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
for (i = 0, j = 0; j < len; i++, j += 4) {
/* LINTED E_BAD_PTR_CAST_ALIGN */
*((uint32_t *)(output + j)) = input[i];
}
} else {
#endif /* little endian -- will work on big endian, but slowly */
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (input[i] >> 24) & 0xff;
output[j + 1] = (input[i] >> 16) & 0xff;
output[j + 2] = (input[i] >> 8) & 0xff;
output[j + 3] = input[i] & 0xff;
}
#if defined(__sparc)
}
#endif
}
static void
Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
size_t len)
{
size_t i, j;
#if defined(__sparc)
if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
for (i = 0, j = 0; j < len; i++, j += 8) {
/* LINTED E_BAD_PTR_CAST_ALIGN */
*((uint64_t *)(output + j)) = input[i];
}
} else {
#endif /* little endian -- will work on big endian, but slowly */
for (i = 0, j = 0; j < len; i++, j += 8) {
output[j] = (input[i] >> 56) & 0xff;
output[j + 1] = (input[i] >> 48) & 0xff;
output[j + 2] = (input[i] >> 40) & 0xff;
output[j + 3] = (input[i] >> 32) & 0xff;
output[j + 4] = (input[i] >> 24) & 0xff;
output[j + 5] = (input[i] >> 16) & 0xff;
output[j + 6] = (input[i] >> 8) & 0xff;
output[j + 7] = input[i] & 0xff;
}
#if defined(__sparc)
}
#endif
}
void
SHA2Init(uint64_t mech, SHA2_CTX *ctx)
{
switch (mech) {
case SHA256_MECH_INFO_TYPE:
case SHA256_HMAC_MECH_INFO_TYPE:
case SHA256_HMAC_GEN_MECH_INFO_TYPE:
ctx->state.s32[0] = 0x6a09e667U;
ctx->state.s32[1] = 0xbb67ae85U;
ctx->state.s32[2] = 0x3c6ef372U;
ctx->state.s32[3] = 0xa54ff53aU;
ctx->state.s32[4] = 0x510e527fU;
ctx->state.s32[5] = 0x9b05688cU;
ctx->state.s32[6] = 0x1f83d9abU;
ctx->state.s32[7] = 0x5be0cd19U;
break;
case SHA384_MECH_INFO_TYPE:
case SHA384_HMAC_MECH_INFO_TYPE:
case SHA384_HMAC_GEN_MECH_INFO_TYPE:
ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
ctx->state.s64[1] = 0x629a292a367cd507ULL;
ctx->state.s64[2] = 0x9159015a3070dd17ULL;
ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
ctx->state.s64[4] = 0x67332667ffc00b31ULL;
ctx->state.s64[5] = 0x8eb44a8768581511ULL;
ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
break;
case SHA512_MECH_INFO_TYPE:
case SHA512_HMAC_MECH_INFO_TYPE:
case SHA512_HMAC_GEN_MECH_INFO_TYPE:
ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
ctx->state.s64[4] = 0x510e527fade682d1ULL;
ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
break;
case SHA512_224_MECH_INFO_TYPE:
ctx->state.s64[0] = 0x8C3D37C819544DA2ULL;
ctx->state.s64[1] = 0x73E1996689DCD4D6ULL;
ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL;
ctx->state.s64[3] = 0x679DD514582F9FCFULL;
ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL;
ctx->state.s64[5] = 0x77E36F7304C48942ULL;
ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL;
ctx->state.s64[7] = 0x1112E6AD91D692A1ULL;
break;
case SHA512_256_MECH_INFO_TYPE:
ctx->state.s64[0] = 0x22312194FC2BF72CULL;
ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL;
ctx->state.s64[2] = 0x2393B86B6F53B151ULL;
ctx->state.s64[3] = 0x963877195940EABDULL;
ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL;
ctx->state.s64[5] = 0xBE5E1E2553863992ULL;
ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL;
ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL;
break;
#ifdef _KERNEL
default:
cmn_err(CE_PANIC,
"sha2_init: failed to find a supported algorithm: 0x%x",
(uint32_t)mech);
#endif /* _KERNEL */
}
ctx->algotype = (uint32_t)mech;
ctx->count.c64[0] = ctx->count.c64[1] = 0;
}
#ifndef _KERNEL
// #pragma inline(SHA256Init, SHA384Init, SHA512Init)
void
SHA256Init(SHA256_CTX *ctx)
{
SHA2Init(SHA256, ctx);
}
void
SHA384Init(SHA384_CTX *ctx)
{
SHA2Init(SHA384, ctx);
}
void
SHA512Init(SHA512_CTX *ctx)
{
SHA2Init(SHA512, ctx);
}
#endif /* _KERNEL */
/*
* SHA2Update()
*
* purpose: continues an sha2 digest operation, using the message block
* to update the context.
* input: SHA2_CTX * : the context to update
* void * : the message block
* size_t : the length of the message block, in bytes
* output: void
*/
void
SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
{
uint32_t i, buf_index, buf_len, buf_limit;
const uint8_t *input = inptr;
uint32_t algotype = ctx->algotype;
/* check for noop */
if (input_len == 0)
return;
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
buf_limit = 64;
/* compute number of bytes mod 64 */
buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
/* update number of bits */
if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
ctx->count.c32[0]++;
ctx->count.c32[0] += (input_len >> 29);
} else {
buf_limit = 128;
/* compute number of bytes mod 128 */
buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
/* update number of bits */
if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
ctx->count.c64[0]++;
ctx->count.c64[0] += (input_len >> 29);
}
buf_len = buf_limit - buf_index;
/* transform as many times as possible */
i = 0;
if (input_len >= buf_len) {
/*
* general optimization:
*
* only do initial bcopy() and SHA2Transform() if
* buf_index != 0. if buf_index == 0, we're just
* wasting our time doing the bcopy() since there
* wasn't any data left over from a previous call to
* SHA2Update().
*/
if (buf_index) {
bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
SHA256Transform(ctx, ctx->buf_un.buf8);
else
SHA512Transform(ctx, ctx->buf_un.buf8);
i = buf_len;
}
#if !defined(__amd64) || !defined(_KERNEL)
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
for (; i + buf_limit - 1 < input_len; i += buf_limit) {
SHA256Transform(ctx, &input[i]);
}
} else {
for (; i + buf_limit - 1 < input_len; i += buf_limit) {
SHA512Transform(ctx, &input[i]);
}
}
#else
uint32_t block_count;
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
block_count = (input_len - i) >> 6;
if (block_count > 0) {
SHA256TransformBlocks(ctx, &input[i],
block_count);
i += block_count << 6;
}
} else {
block_count = (input_len - i) >> 7;
if (block_count > 0) {
SHA512TransformBlocks(ctx, &input[i],
block_count);
i += block_count << 7;
}
}
#endif /* !__amd64 || !_KERNEL */
/*
* general optimization:
*
* if i and input_len are the same, return now instead
* of calling bcopy(), since the bcopy() in this case
* will be an expensive noop.
*/
if (input_len == i)
return;
buf_index = 0;
}
/* buffer remaining input */
bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
}
/*
* SHA2Final()
*
* purpose: ends an sha2 digest operation, finalizing the message digest and
* zeroing the context.
* input: uchar_t * : a buffer to store the digest
* : The function actually uses void* because many
* : callers pass things other than uchar_t here.
* SHA2_CTX * : the context to finalize, save, and zero
* output: void
*/
void
SHA2Final(void *digest, SHA2_CTX *ctx)
{
uint8_t bitcount_be[sizeof (ctx->count.c32)];
uint8_t bitcount_be64[sizeof (ctx->count.c64)];
uint32_t index;
uint32_t algotype = ctx->algotype;
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
index = (ctx->count.c32[1] >> 3) & 0x3f;
Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
} else {
index = (ctx->count.c64[1] >> 3) & 0x7f;
Encode64(bitcount_be64, ctx->count.c64,
sizeof (bitcount_be64));
SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
ctx->state.s64[6] = ctx->state.s64[7] = 0;
Encode64(digest, ctx->state.s64,
sizeof (uint64_t) * 6);
} else if (algotype == SHA512_224_MECH_INFO_TYPE) {
uint8_t last[sizeof (uint64_t)];
/*
* Since SHA-512/224 doesn't align well to 64-bit
* boundaries, we must do the encoding in three steps:
* 1) encode the three 64-bit words that fit neatly
* 2) encode the last 64-bit word to a temp buffer
* 3) chop out the lower 32-bits from the temp buffer
* and append them to the digest
*/
Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3);
Encode64(last, &ctx->state.s64[3], sizeof (uint64_t));
bcopy(last, (uint8_t *)digest + 24, 4);
} else if (algotype == SHA512_256_MECH_INFO_TYPE) {
Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4);
} else {
Encode64(digest, ctx->state.s64,
sizeof (ctx->state.s64));
}
}
/* zeroize sensitive information */
bzero(ctx, sizeof (*ctx));
}
#ifdef _KERNEL
EXPORT_SYMBOL(SHA2Init);
EXPORT_SYMBOL(SHA2Update);
EXPORT_SYMBOL(SHA2Final);
#endif