1140 lines
30 KiB
C
1140 lines
30 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <sys/dataset_kstats.h>
|
||
|
#include <sys/dbuf.h>
|
||
|
#include <sys/dmu_traverse.h>
|
||
|
#include <sys/dsl_dataset.h>
|
||
|
#include <sys/dsl_prop.h>
|
||
|
#include <sys/dsl_dir.h>
|
||
|
#include <sys/zap.h>
|
||
|
#include <sys/zfeature.h>
|
||
|
#include <sys/zil_impl.h>
|
||
|
#include <sys/dmu_tx.h>
|
||
|
#include <sys/zio.h>
|
||
|
#include <sys/zfs_rlock.h>
|
||
|
#include <sys/spa_impl.h>
|
||
|
#include <sys/zvol.h>
|
||
|
#include <sys/zvol_impl.h>
|
||
|
|
||
|
#include <linux/blkdev_compat.h>
|
||
|
#include <linux/task_io_accounting_ops.h>
|
||
|
|
||
|
unsigned int zvol_major = ZVOL_MAJOR;
|
||
|
unsigned int zvol_request_sync = 0;
|
||
|
unsigned int zvol_prefetch_bytes = (128 * 1024);
|
||
|
unsigned long zvol_max_discard_blocks = 16384;
|
||
|
unsigned int zvol_threads = 32;
|
||
|
|
||
|
struct zvol_state_os {
|
||
|
struct gendisk *zvo_disk; /* generic disk */
|
||
|
struct request_queue *zvo_queue; /* request queue */
|
||
|
dev_t zvo_dev; /* device id */
|
||
|
};
|
||
|
|
||
|
taskq_t *zvol_taskq;
|
||
|
static struct ida zvol_ida;
|
||
|
|
||
|
typedef struct zv_request {
|
||
|
zvol_state_t *zv;
|
||
|
struct bio *bio;
|
||
|
taskq_ent_t ent;
|
||
|
} zv_request_t;
|
||
|
|
||
|
/*
|
||
|
* Given a path, return TRUE if path is a ZVOL.
|
||
|
*/
|
||
|
static boolean_t
|
||
|
zvol_is_zvol_impl(const char *device)
|
||
|
{
|
||
|
struct block_device *bdev;
|
||
|
unsigned int major;
|
||
|
|
||
|
bdev = vdev_lookup_bdev(device);
|
||
|
if (IS_ERR(bdev))
|
||
|
return (B_FALSE);
|
||
|
|
||
|
major = MAJOR(bdev->bd_dev);
|
||
|
bdput(bdev);
|
||
|
|
||
|
if (major == zvol_major)
|
||
|
return (B_TRUE);
|
||
|
|
||
|
return (B_FALSE);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
uio_from_bio(uio_t *uio, struct bio *bio)
|
||
|
{
|
||
|
uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
|
||
|
uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
|
||
|
uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
|
||
|
uio->uio_segflg = UIO_BVEC;
|
||
|
uio->uio_limit = MAXOFFSET_T;
|
||
|
uio->uio_resid = BIO_BI_SIZE(bio);
|
||
|
uio->uio_skip = BIO_BI_SKIP(bio);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_write(void *arg)
|
||
|
{
|
||
|
int error = 0;
|
||
|
|
||
|
zv_request_t *zvr = arg;
|
||
|
struct bio *bio = zvr->bio;
|
||
|
uio_t uio = { { 0 }, 0 };
|
||
|
uio_from_bio(&uio, bio);
|
||
|
|
||
|
zvol_state_t *zv = zvr->zv;
|
||
|
ASSERT3P(zv, !=, NULL);
|
||
|
ASSERT3U(zv->zv_open_count, >, 0);
|
||
|
ASSERT3P(zv->zv_zilog, !=, NULL);
|
||
|
|
||
|
/* bio marked as FLUSH need to flush before write */
|
||
|
if (bio_is_flush(bio))
|
||
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
||
|
|
||
|
/* Some requests are just for flush and nothing else. */
|
||
|
if (uio.uio_resid == 0) {
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
BIO_END_IO(bio, 0);
|
||
|
kmem_free(zvr, sizeof (zv_request_t));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ssize_t start_resid = uio.uio_resid;
|
||
|
unsigned long start_jif = jiffies;
|
||
|
blk_generic_start_io_acct(zv->zv_zso->zvo_queue, WRITE,
|
||
|
bio_sectors(bio), &zv->zv_zso->zvo_disk->part0);
|
||
|
|
||
|
boolean_t sync =
|
||
|
bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
||
|
|
||
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
|
||
|
uio.uio_loffset, uio.uio_resid, RL_WRITER);
|
||
|
|
||
|
uint64_t volsize = zv->zv_volsize;
|
||
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
||
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
||
|
uint64_t off = uio.uio_loffset;
|
||
|
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
|
||
|
|
||
|
if (bytes > volsize - off) /* don't write past the end */
|
||
|
bytes = volsize - off;
|
||
|
|
||
|
dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
|
||
|
|
||
|
/* This will only fail for ENOSPC */
|
||
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (error) {
|
||
|
dmu_tx_abort(tx);
|
||
|
break;
|
||
|
}
|
||
|
error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
|
||
|
if (error == 0) {
|
||
|
zvol_log_write(zv, tx, off, bytes, sync);
|
||
|
}
|
||
|
dmu_tx_commit(tx);
|
||
|
|
||
|
if (error)
|
||
|
break;
|
||
|
}
|
||
|
zfs_rangelock_exit(lr);
|
||
|
|
||
|
int64_t nwritten = start_resid - uio.uio_resid;
|
||
|
dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
|
||
|
task_io_account_write(nwritten);
|
||
|
|
||
|
if (sync)
|
||
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
||
|
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
blk_generic_end_io_acct(zv->zv_zso->zvo_queue,
|
||
|
WRITE, &zv->zv_zso->zvo_disk->part0, start_jif);
|
||
|
BIO_END_IO(bio, -error);
|
||
|
kmem_free(zvr, sizeof (zv_request_t));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_discard(void *arg)
|
||
|
{
|
||
|
zv_request_t *zvr = arg;
|
||
|
struct bio *bio = zvr->bio;
|
||
|
zvol_state_t *zv = zvr->zv;
|
||
|
uint64_t start = BIO_BI_SECTOR(bio) << 9;
|
||
|
uint64_t size = BIO_BI_SIZE(bio);
|
||
|
uint64_t end = start + size;
|
||
|
boolean_t sync;
|
||
|
int error = 0;
|
||
|
dmu_tx_t *tx;
|
||
|
unsigned long start_jif;
|
||
|
|
||
|
ASSERT3P(zv, !=, NULL);
|
||
|
ASSERT3U(zv->zv_open_count, >, 0);
|
||
|
ASSERT3P(zv->zv_zilog, !=, NULL);
|
||
|
|
||
|
start_jif = jiffies;
|
||
|
blk_generic_start_io_acct(zv->zv_zso->zvo_queue, WRITE,
|
||
|
bio_sectors(bio), &zv->zv_zso->zvo_disk->part0);
|
||
|
|
||
|
sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
||
|
|
||
|
if (end > zv->zv_volsize) {
|
||
|
error = SET_ERROR(EIO);
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Align the request to volume block boundaries when a secure erase is
|
||
|
* not required. This will prevent dnode_free_range() from zeroing out
|
||
|
* the unaligned parts which is slow (read-modify-write) and useless
|
||
|
* since we are not freeing any space by doing so.
|
||
|
*/
|
||
|
if (!bio_is_secure_erase(bio)) {
|
||
|
start = P2ROUNDUP(start, zv->zv_volblocksize);
|
||
|
end = P2ALIGN(end, zv->zv_volblocksize);
|
||
|
size = end - start;
|
||
|
}
|
||
|
|
||
|
if (start >= end)
|
||
|
goto unlock;
|
||
|
|
||
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
|
||
|
start, size, RL_WRITER);
|
||
|
|
||
|
tx = dmu_tx_create(zv->zv_objset);
|
||
|
dmu_tx_mark_netfree(tx);
|
||
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (error != 0) {
|
||
|
dmu_tx_abort(tx);
|
||
|
} else {
|
||
|
zvol_log_truncate(zv, tx, start, size, B_TRUE);
|
||
|
dmu_tx_commit(tx);
|
||
|
error = dmu_free_long_range(zv->zv_objset,
|
||
|
ZVOL_OBJ, start, size);
|
||
|
}
|
||
|
zfs_rangelock_exit(lr);
|
||
|
|
||
|
if (error == 0 && sync)
|
||
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
||
|
|
||
|
unlock:
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
blk_generic_end_io_acct(zv->zv_zso->zvo_queue, WRITE,
|
||
|
&zv->zv_zso->zvo_disk->part0, start_jif);
|
||
|
BIO_END_IO(bio, -error);
|
||
|
kmem_free(zvr, sizeof (zv_request_t));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_read(void *arg)
|
||
|
{
|
||
|
int error = 0;
|
||
|
|
||
|
zv_request_t *zvr = arg;
|
||
|
struct bio *bio = zvr->bio;
|
||
|
uio_t uio = { { 0 }, 0 };
|
||
|
uio_from_bio(&uio, bio);
|
||
|
|
||
|
zvol_state_t *zv = zvr->zv;
|
||
|
ASSERT3P(zv, !=, NULL);
|
||
|
ASSERT3U(zv->zv_open_count, >, 0);
|
||
|
|
||
|
ssize_t start_resid = uio.uio_resid;
|
||
|
unsigned long start_jif = jiffies;
|
||
|
blk_generic_start_io_acct(zv->zv_zso->zvo_queue, READ, bio_sectors(bio),
|
||
|
&zv->zv_zso->zvo_disk->part0);
|
||
|
|
||
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
|
||
|
uio.uio_loffset, uio.uio_resid, RL_READER);
|
||
|
|
||
|
uint64_t volsize = zv->zv_volsize;
|
||
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
||
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
||
|
|
||
|
/* don't read past the end */
|
||
|
if (bytes > volsize - uio.uio_loffset)
|
||
|
bytes = volsize - uio.uio_loffset;
|
||
|
|
||
|
error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
|
||
|
if (error) {
|
||
|
/* convert checksum errors into IO errors */
|
||
|
if (error == ECKSUM)
|
||
|
error = SET_ERROR(EIO);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
zfs_rangelock_exit(lr);
|
||
|
|
||
|
int64_t nread = start_resid - uio.uio_resid;
|
||
|
dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
|
||
|
task_io_account_read(nread);
|
||
|
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
blk_generic_end_io_acct(zv->zv_zso->zvo_queue, READ,
|
||
|
&zv->zv_zso->zvo_disk->part0, start_jif);
|
||
|
BIO_END_IO(bio, -error);
|
||
|
kmem_free(zvr, sizeof (zv_request_t));
|
||
|
}
|
||
|
|
||
|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
|
||
|
static blk_qc_t
|
||
|
zvol_submit_bio(struct bio *bio)
|
||
|
#else
|
||
|
static MAKE_REQUEST_FN_RET
|
||
|
zvol_request(struct request_queue *q, struct bio *bio)
|
||
|
#endif
|
||
|
{
|
||
|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
|
||
|
struct request_queue *q = bio->bi_disk->queue;
|
||
|
#endif
|
||
|
zvol_state_t *zv = q->queuedata;
|
||
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
||
|
uint64_t offset = BIO_BI_SECTOR(bio) << 9;
|
||
|
uint64_t size = BIO_BI_SIZE(bio);
|
||
|
int rw = bio_data_dir(bio);
|
||
|
zv_request_t *zvr;
|
||
|
|
||
|
if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
|
||
|
printk(KERN_INFO
|
||
|
"%s: bad access: offset=%llu, size=%lu\n",
|
||
|
zv->zv_zso->zvo_disk->disk_name,
|
||
|
(long long unsigned)offset,
|
||
|
(long unsigned)size);
|
||
|
|
||
|
BIO_END_IO(bio, -SET_ERROR(EIO));
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (rw == WRITE) {
|
||
|
if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
|
||
|
BIO_END_IO(bio, -SET_ERROR(EROFS));
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Prevents the zvol from being suspended, or the ZIL being
|
||
|
* concurrently opened. Will be released after the i/o
|
||
|
* completes.
|
||
|
*/
|
||
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
||
|
|
||
|
/*
|
||
|
* Open a ZIL if this is the first time we have written to this
|
||
|
* zvol. We protect zv->zv_zilog with zv_suspend_lock rather
|
||
|
* than zv_state_lock so that we don't need to acquire an
|
||
|
* additional lock in this path.
|
||
|
*/
|
||
|
if (zv->zv_zilog == NULL) {
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
rw_enter(&zv->zv_suspend_lock, RW_WRITER);
|
||
|
if (zv->zv_zilog == NULL) {
|
||
|
zv->zv_zilog = zil_open(zv->zv_objset,
|
||
|
zvol_get_data);
|
||
|
zv->zv_flags |= ZVOL_WRITTEN_TO;
|
||
|
}
|
||
|
rw_downgrade(&zv->zv_suspend_lock);
|
||
|
}
|
||
|
|
||
|
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
|
||
|
zvr->zv = zv;
|
||
|
zvr->bio = bio;
|
||
|
taskq_init_ent(&zvr->ent);
|
||
|
|
||
|
/*
|
||
|
* We don't want this thread to be blocked waiting for i/o to
|
||
|
* complete, so we instead wait from a taskq callback. The
|
||
|
* i/o may be a ZIL write (via zil_commit()), or a read of an
|
||
|
* indirect block, or a read of a data block (if this is a
|
||
|
* partial-block write). We will indicate that the i/o is
|
||
|
* complete by calling BIO_END_IO() from the taskq callback.
|
||
|
*
|
||
|
* This design allows the calling thread to continue and
|
||
|
* initiate more concurrent operations by calling
|
||
|
* zvol_request() again. There are typically only a small
|
||
|
* number of threads available to call zvol_request() (e.g.
|
||
|
* one per iSCSI target), so keeping the latency of
|
||
|
* zvol_request() low is important for performance.
|
||
|
*
|
||
|
* The zvol_request_sync module parameter allows this
|
||
|
* behavior to be altered, for performance evaluation
|
||
|
* purposes. If the callback blocks, setting
|
||
|
* zvol_request_sync=1 will result in much worse performance.
|
||
|
*
|
||
|
* We can have up to zvol_threads concurrent i/o's being
|
||
|
* processed for all zvols on the system. This is typically
|
||
|
* a vast improvement over the zvol_request_sync=1 behavior
|
||
|
* of one i/o at a time per zvol. However, an even better
|
||
|
* design would be for zvol_request() to initiate the zio
|
||
|
* directly, and then be notified by the zio_done callback,
|
||
|
* which would call BIO_END_IO(). Unfortunately, the DMU/ZIL
|
||
|
* interfaces lack this functionality (they block waiting for
|
||
|
* the i/o to complete).
|
||
|
*/
|
||
|
if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
|
||
|
if (zvol_request_sync) {
|
||
|
zvol_discard(zvr);
|
||
|
} else {
|
||
|
taskq_dispatch_ent(zvol_taskq,
|
||
|
zvol_discard, zvr, 0, &zvr->ent);
|
||
|
}
|
||
|
} else {
|
||
|
if (zvol_request_sync) {
|
||
|
zvol_write(zvr);
|
||
|
} else {
|
||
|
taskq_dispatch_ent(zvol_taskq,
|
||
|
zvol_write, zvr, 0, &zvr->ent);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* The SCST driver, and possibly others, may issue READ I/Os
|
||
|
* with a length of zero bytes. These empty I/Os contain no
|
||
|
* data and require no additional handling.
|
||
|
*/
|
||
|
if (size == 0) {
|
||
|
BIO_END_IO(bio, 0);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
|
||
|
zvr->zv = zv;
|
||
|
zvr->bio = bio;
|
||
|
taskq_init_ent(&zvr->ent);
|
||
|
|
||
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
||
|
|
||
|
/* See comment in WRITE case above. */
|
||
|
if (zvol_request_sync) {
|
||
|
zvol_read(zvr);
|
||
|
} else {
|
||
|
taskq_dispatch_ent(zvol_taskq,
|
||
|
zvol_read, zvr, 0, &zvr->ent);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
spl_fstrans_unmark(cookie);
|
||
|
#if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
|
||
|
defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
|
||
|
return (BLK_QC_T_NONE);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zvol_open(struct block_device *bdev, fmode_t flag)
|
||
|
{
|
||
|
zvol_state_t *zv;
|
||
|
int error = 0;
|
||
|
boolean_t drop_suspend = B_TRUE;
|
||
|
|
||
|
rw_enter(&zvol_state_lock, RW_READER);
|
||
|
/*
|
||
|
* Obtain a copy of private_data under the zvol_state_lock to make
|
||
|
* sure that either the result of zvol free code path setting
|
||
|
* bdev->bd_disk->private_data to NULL is observed, or zvol_free()
|
||
|
* is not called on this zv because of the positive zv_open_count.
|
||
|
*/
|
||
|
zv = bdev->bd_disk->private_data;
|
||
|
if (zv == NULL) {
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
return (SET_ERROR(-ENXIO));
|
||
|
}
|
||
|
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
/*
|
||
|
* make sure zvol is not suspended during first open
|
||
|
* (hold zv_suspend_lock) and respect proper lock acquisition
|
||
|
* ordering - zv_suspend_lock before zv_state_lock
|
||
|
*/
|
||
|
if (zv->zv_open_count == 0) {
|
||
|
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
/* check to see if zv_suspend_lock is needed */
|
||
|
if (zv->zv_open_count != 0) {
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
drop_suspend = B_FALSE;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
drop_suspend = B_FALSE;
|
||
|
}
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
|
||
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
||
|
|
||
|
if (zv->zv_open_count == 0) {
|
||
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
||
|
error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
|
||
|
if (error)
|
||
|
goto out_mutex;
|
||
|
}
|
||
|
|
||
|
if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
|
||
|
error = -EROFS;
|
||
|
goto out_open_count;
|
||
|
}
|
||
|
|
||
|
zv->zv_open_count++;
|
||
|
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
if (drop_suspend)
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
|
||
|
zfs_check_media_change(bdev);
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
out_open_count:
|
||
|
if (zv->zv_open_count == 0)
|
||
|
zvol_last_close(zv);
|
||
|
|
||
|
out_mutex:
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
if (drop_suspend)
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
if (error == -EINTR) {
|
||
|
error = -ERESTARTSYS;
|
||
|
schedule();
|
||
|
}
|
||
|
return (SET_ERROR(error));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_release(struct gendisk *disk, fmode_t mode)
|
||
|
{
|
||
|
zvol_state_t *zv;
|
||
|
boolean_t drop_suspend = B_TRUE;
|
||
|
|
||
|
rw_enter(&zvol_state_lock, RW_READER);
|
||
|
zv = disk->private_data;
|
||
|
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
ASSERT3U(zv->zv_open_count, >, 0);
|
||
|
/*
|
||
|
* make sure zvol is not suspended during last close
|
||
|
* (hold zv_suspend_lock) and respect proper lock acquisition
|
||
|
* ordering - zv_suspend_lock before zv_state_lock
|
||
|
*/
|
||
|
if (zv->zv_open_count == 1) {
|
||
|
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
/* check to see if zv_suspend_lock is needed */
|
||
|
if (zv->zv_open_count != 1) {
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
drop_suspend = B_FALSE;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
drop_suspend = B_FALSE;
|
||
|
}
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
|
||
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
||
|
|
||
|
zv->zv_open_count--;
|
||
|
if (zv->zv_open_count == 0) {
|
||
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
||
|
zvol_last_close(zv);
|
||
|
}
|
||
|
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
|
||
|
if (drop_suspend)
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zvol_ioctl(struct block_device *bdev, fmode_t mode,
|
||
|
unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
||
|
int error = 0;
|
||
|
|
||
|
ASSERT3U(zv->zv_open_count, >, 0);
|
||
|
|
||
|
switch (cmd) {
|
||
|
case BLKFLSBUF:
|
||
|
fsync_bdev(bdev);
|
||
|
invalidate_bdev(bdev);
|
||
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
||
|
|
||
|
if (!(zv->zv_flags & ZVOL_RDONLY))
|
||
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
||
|
|
||
|
rw_exit(&zv->zv_suspend_lock);
|
||
|
break;
|
||
|
|
||
|
case BLKZNAME:
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
error = -ENOTTY;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return (SET_ERROR(error));
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
static int
|
||
|
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
||
|
unsigned cmd, unsigned long arg)
|
||
|
{
|
||
|
return (zvol_ioctl(bdev, mode, cmd, arg));
|
||
|
}
|
||
|
#else
|
||
|
#define zvol_compat_ioctl NULL
|
||
|
#endif
|
||
|
|
||
|
static unsigned int
|
||
|
zvol_check_events(struct gendisk *disk, unsigned int clearing)
|
||
|
{
|
||
|
unsigned int mask = 0;
|
||
|
|
||
|
rw_enter(&zvol_state_lock, RW_READER);
|
||
|
|
||
|
zvol_state_t *zv = disk->private_data;
|
||
|
if (zv != NULL) {
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
|
||
|
zv->zv_changed = 0;
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
}
|
||
|
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
|
||
|
return (mask);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zvol_revalidate_disk(struct gendisk *disk)
|
||
|
{
|
||
|
rw_enter(&zvol_state_lock, RW_READER);
|
||
|
|
||
|
zvol_state_t *zv = disk->private_data;
|
||
|
if (zv != NULL) {
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
set_capacity(zv->zv_zso->zvo_disk,
|
||
|
zv->zv_volsize >> SECTOR_BITS);
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
}
|
||
|
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zvol_update_volsize(zvol_state_t *zv, uint64_t volsize)
|
||
|
{
|
||
|
|
||
|
#ifdef HAVE_REVALIDATE_DISK_SIZE
|
||
|
revalidate_disk_size(zv->zv_zso->zvo_disk, false);
|
||
|
#else
|
||
|
revalidate_disk(zv->zv_zso->zvo_disk);
|
||
|
#endif
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_clear_private(zvol_state_t *zv)
|
||
|
{
|
||
|
/*
|
||
|
* Cleared while holding zvol_state_lock as a writer
|
||
|
* which will prevent zvol_open() from opening it.
|
||
|
*/
|
||
|
zv->zv_zso->zvo_disk->private_data = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Provide a simple virtual geometry for legacy compatibility. For devices
|
||
|
* smaller than 1 MiB a small head and sector count is used to allow very
|
||
|
* tiny devices. For devices over 1 Mib a standard head and sector count
|
||
|
* is used to keep the cylinders count reasonable.
|
||
|
*/
|
||
|
static int
|
||
|
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
||
|
{
|
||
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
||
|
sector_t sectors;
|
||
|
|
||
|
ASSERT3U(zv->zv_open_count, >, 0);
|
||
|
|
||
|
sectors = get_capacity(zv->zv_zso->zvo_disk);
|
||
|
|
||
|
if (sectors > 2048) {
|
||
|
geo->heads = 16;
|
||
|
geo->sectors = 63;
|
||
|
} else {
|
||
|
geo->heads = 2;
|
||
|
geo->sectors = 4;
|
||
|
}
|
||
|
|
||
|
geo->start = 0;
|
||
|
geo->cylinders = sectors / (geo->heads * geo->sectors);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find a zvol_state_t given the full major+minor dev_t. If found,
|
||
|
* return with zv_state_lock taken, otherwise, return (NULL) without
|
||
|
* taking zv_state_lock.
|
||
|
*/
|
||
|
static zvol_state_t *
|
||
|
zvol_find_by_dev(dev_t dev)
|
||
|
{
|
||
|
zvol_state_t *zv;
|
||
|
|
||
|
rw_enter(&zvol_state_lock, RW_READER);
|
||
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
||
|
zv = list_next(&zvol_state_list, zv)) {
|
||
|
mutex_enter(&zv->zv_state_lock);
|
||
|
if (zv->zv_zso->zvo_dev == dev) {
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
return (zv);
|
||
|
}
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
}
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
static struct kobject *
|
||
|
zvol_probe(dev_t dev, int *part, void *arg)
|
||
|
{
|
||
|
zvol_state_t *zv;
|
||
|
struct kobject *kobj;
|
||
|
|
||
|
zv = zvol_find_by_dev(dev);
|
||
|
kobj = zv ? get_disk_and_module(zv->zv_zso->zvo_disk) : NULL;
|
||
|
ASSERT(zv == NULL || MUTEX_HELD(&zv->zv_state_lock));
|
||
|
if (zv)
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
|
||
|
return (kobj);
|
||
|
}
|
||
|
|
||
|
static struct block_device_operations zvol_ops = {
|
||
|
.open = zvol_open,
|
||
|
.release = zvol_release,
|
||
|
.ioctl = zvol_ioctl,
|
||
|
.compat_ioctl = zvol_compat_ioctl,
|
||
|
.check_events = zvol_check_events,
|
||
|
.revalidate_disk = zvol_revalidate_disk,
|
||
|
.getgeo = zvol_getgeo,
|
||
|
.owner = THIS_MODULE,
|
||
|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
|
||
|
.submit_bio = zvol_submit_bio,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Allocate memory for a new zvol_state_t and setup the required
|
||
|
* request queue and generic disk structures for the block device.
|
||
|
*/
|
||
|
static zvol_state_t *
|
||
|
zvol_alloc(dev_t dev, const char *name)
|
||
|
{
|
||
|
zvol_state_t *zv;
|
||
|
struct zvol_state_os *zso;
|
||
|
uint64_t volmode;
|
||
|
|
||
|
if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
|
||
|
return (NULL);
|
||
|
|
||
|
if (volmode == ZFS_VOLMODE_DEFAULT)
|
||
|
volmode = zvol_volmode;
|
||
|
|
||
|
if (volmode == ZFS_VOLMODE_NONE)
|
||
|
return (NULL);
|
||
|
|
||
|
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
|
||
|
zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
|
||
|
zv->zv_zso = zso;
|
||
|
zv->zv_volmode = volmode;
|
||
|
|
||
|
list_link_init(&zv->zv_next);
|
||
|
mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
|
|
||
|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
|
||
|
zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
|
||
|
#else
|
||
|
zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
|
||
|
#endif
|
||
|
if (zso->zvo_queue == NULL)
|
||
|
goto out_kmem;
|
||
|
|
||
|
blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
|
||
|
|
||
|
/* Limit read-ahead to a single page to prevent over-prefetching. */
|
||
|
blk_queue_set_read_ahead(zso->zvo_queue, 1);
|
||
|
|
||
|
/* Disable write merging in favor of the ZIO pipeline. */
|
||
|
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
|
||
|
|
||
|
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
|
||
|
if (zso->zvo_disk == NULL)
|
||
|
goto out_queue;
|
||
|
|
||
|
zso->zvo_queue->queuedata = zv;
|
||
|
zso->zvo_dev = dev;
|
||
|
zv->zv_open_count = 0;
|
||
|
strlcpy(zv->zv_name, name, MAXNAMELEN);
|
||
|
|
||
|
zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
|
||
|
rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
|
||
|
|
||
|
zso->zvo_disk->major = zvol_major;
|
||
|
zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
|
||
|
|
||
|
if (volmode == ZFS_VOLMODE_DEV) {
|
||
|
/*
|
||
|
* ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
|
||
|
* gendisk->minors = 1 as noted in include/linux/genhd.h.
|
||
|
* Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
|
||
|
* and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
|
||
|
* setting gendisk->flags accordingly.
|
||
|
*/
|
||
|
zso->zvo_disk->minors = 1;
|
||
|
#if defined(GENHD_FL_EXT_DEVT)
|
||
|
zso->zvo_disk->flags &= ~GENHD_FL_EXT_DEVT;
|
||
|
#endif
|
||
|
#if defined(GENHD_FL_NO_PART_SCAN)
|
||
|
zso->zvo_disk->flags |= GENHD_FL_NO_PART_SCAN;
|
||
|
#endif
|
||
|
}
|
||
|
zso->zvo_disk->first_minor = (dev & MINORMASK);
|
||
|
zso->zvo_disk->fops = &zvol_ops;
|
||
|
zso->zvo_disk->private_data = zv;
|
||
|
zso->zvo_disk->queue = zso->zvo_queue;
|
||
|
snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
|
||
|
ZVOL_DEV_NAME, (dev & MINORMASK));
|
||
|
|
||
|
return (zv);
|
||
|
|
||
|
out_queue:
|
||
|
blk_cleanup_queue(zso->zvo_queue);
|
||
|
out_kmem:
|
||
|
kmem_free(zso, sizeof (struct zvol_state_os));
|
||
|
kmem_free(zv, sizeof (zvol_state_t));
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
|
||
|
* At this time, the structure is not opened by anyone, is taken off
|
||
|
* the zvol_state_list, and has its private data set to NULL.
|
||
|
* The zvol_state_lock is dropped.
|
||
|
*
|
||
|
* This function may take many milliseconds to complete (e.g. we've seen
|
||
|
* it take over 256ms), due to the calls to "blk_cleanup_queue" and
|
||
|
* "del_gendisk". Thus, consumers need to be careful to account for this
|
||
|
* latency when calling this function.
|
||
|
*/
|
||
|
static void
|
||
|
zvol_free(zvol_state_t *zv)
|
||
|
{
|
||
|
|
||
|
ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
|
||
|
ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
|
||
|
ASSERT0(zv->zv_open_count);
|
||
|
ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
|
||
|
|
||
|
rw_destroy(&zv->zv_suspend_lock);
|
||
|
zfs_rangelock_fini(&zv->zv_rangelock);
|
||
|
|
||
|
del_gendisk(zv->zv_zso->zvo_disk);
|
||
|
blk_cleanup_queue(zv->zv_zso->zvo_queue);
|
||
|
put_disk(zv->zv_zso->zvo_disk);
|
||
|
|
||
|
ida_simple_remove(&zvol_ida,
|
||
|
MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
|
||
|
|
||
|
mutex_destroy(&zv->zv_state_lock);
|
||
|
dataset_kstats_destroy(&zv->zv_kstat);
|
||
|
|
||
|
kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
|
||
|
kmem_free(zv, sizeof (zvol_state_t));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zvol_wait_close(zvol_state_t *zv)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Create a block device minor node and setup the linkage between it
|
||
|
* and the specified volume. Once this function returns the block
|
||
|
* device is live and ready for use.
|
||
|
*/
|
||
|
static int
|
||
|
zvol_os_create_minor(const char *name)
|
||
|
{
|
||
|
zvol_state_t *zv;
|
||
|
objset_t *os;
|
||
|
dmu_object_info_t *doi;
|
||
|
uint64_t volsize;
|
||
|
uint64_t len;
|
||
|
unsigned minor = 0;
|
||
|
int error = 0;
|
||
|
int idx;
|
||
|
uint64_t hash = zvol_name_hash(name);
|
||
|
|
||
|
if (zvol_inhibit_dev)
|
||
|
return (0);
|
||
|
|
||
|
idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
|
||
|
if (idx < 0)
|
||
|
return (SET_ERROR(-idx));
|
||
|
minor = idx << ZVOL_MINOR_BITS;
|
||
|
|
||
|
zv = zvol_find_by_name_hash(name, hash, RW_NONE);
|
||
|
if (zv) {
|
||
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
||
|
mutex_exit(&zv->zv_state_lock);
|
||
|
ida_simple_remove(&zvol_ida, idx);
|
||
|
return (SET_ERROR(EEXIST));
|
||
|
}
|
||
|
|
||
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
||
|
|
||
|
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
|
||
|
if (error)
|
||
|
goto out_doi;
|
||
|
|
||
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
||
|
if (error)
|
||
|
goto out_dmu_objset_disown;
|
||
|
|
||
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
||
|
if (error)
|
||
|
goto out_dmu_objset_disown;
|
||
|
|
||
|
zv = zvol_alloc(MKDEV(zvol_major, minor), name);
|
||
|
if (zv == NULL) {
|
||
|
error = SET_ERROR(EAGAIN);
|
||
|
goto out_dmu_objset_disown;
|
||
|
}
|
||
|
zv->zv_hash = hash;
|
||
|
|
||
|
if (dmu_objset_is_snapshot(os))
|
||
|
zv->zv_flags |= ZVOL_RDONLY;
|
||
|
|
||
|
zv->zv_volblocksize = doi->doi_data_block_size;
|
||
|
zv->zv_volsize = volsize;
|
||
|
zv->zv_objset = os;
|
||
|
|
||
|
set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
|
||
|
|
||
|
blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
|
||
|
(DMU_MAX_ACCESS / 4) >> 9);
|
||
|
blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
|
||
|
blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
|
||
|
blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
|
||
|
zv->zv_volblocksize);
|
||
|
blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
|
||
|
blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
|
||
|
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
|
||
|
blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
|
||
|
zv->zv_volblocksize);
|
||
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
|
||
|
#ifdef QUEUE_FLAG_NONROT
|
||
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
|
||
|
#endif
|
||
|
#ifdef QUEUE_FLAG_ADD_RANDOM
|
||
|
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
|
||
|
#endif
|
||
|
/* This flag was introduced in kernel version 4.12. */
|
||
|
#ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
|
||
|
blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
|
||
|
#endif
|
||
|
|
||
|
if (spa_writeable(dmu_objset_spa(os))) {
|
||
|
if (zil_replay_disable)
|
||
|
zil_destroy(dmu_objset_zil(os), B_FALSE);
|
||
|
else
|
||
|
zil_replay(os, zv, zvol_replay_vector);
|
||
|
}
|
||
|
ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
|
||
|
dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
|
||
|
|
||
|
/*
|
||
|
* When udev detects the addition of the device it will immediately
|
||
|
* invoke blkid(8) to determine the type of content on the device.
|
||
|
* Prefetching the blocks commonly scanned by blkid(8) will speed
|
||
|
* up this process.
|
||
|
*/
|
||
|
len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
|
||
|
if (len > 0) {
|
||
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
|
||
|
dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
|
||
|
ZIO_PRIORITY_SYNC_READ);
|
||
|
}
|
||
|
|
||
|
zv->zv_objset = NULL;
|
||
|
out_dmu_objset_disown:
|
||
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
||
|
out_doi:
|
||
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
||
|
|
||
|
/*
|
||
|
* Keep in mind that once add_disk() is called, the zvol is
|
||
|
* announced to the world, and zvol_open()/zvol_release() can
|
||
|
* be called at any time. Incidentally, add_disk() itself calls
|
||
|
* zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
|
||
|
* directly as well.
|
||
|
*/
|
||
|
if (error == 0) {
|
||
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
||
|
zvol_insert(zv);
|
||
|
rw_exit(&zvol_state_lock);
|
||
|
add_disk(zv->zv_zso->zvo_disk);
|
||
|
} else {
|
||
|
ida_simple_remove(&zvol_ida, idx);
|
||
|
}
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_rename_minor(zvol_state_t *zv, const char *newname)
|
||
|
{
|
||
|
int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
|
||
|
|
||
|
ASSERT(RW_LOCK_HELD(&zvol_state_lock));
|
||
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
||
|
|
||
|
strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
|
||
|
|
||
|
/* move to new hashtable entry */
|
||
|
zv->zv_hash = zvol_name_hash(zv->zv_name);
|
||
|
hlist_del(&zv->zv_hlink);
|
||
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
||
|
|
||
|
/*
|
||
|
* The block device's read-only state is briefly changed causing
|
||
|
* a KOBJ_CHANGE uevent to be issued. This ensures udev detects
|
||
|
* the name change and fixes the symlinks. This does not change
|
||
|
* ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
|
||
|
* changes. This would normally be done using kobject_uevent() but
|
||
|
* that is a GPL-only symbol which is why we need this workaround.
|
||
|
*/
|
||
|
set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
|
||
|
set_disk_ro(zv->zv_zso->zvo_disk, readonly);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_set_disk_ro_impl(zvol_state_t *zv, int flags)
|
||
|
{
|
||
|
|
||
|
set_disk_ro(zv->zv_zso->zvo_disk, flags);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zvol_set_capacity_impl(zvol_state_t *zv, uint64_t capacity)
|
||
|
{
|
||
|
|
||
|
set_capacity(zv->zv_zso->zvo_disk, capacity);
|
||
|
}
|
||
|
|
||
|
const static zvol_platform_ops_t zvol_linux_ops = {
|
||
|
.zv_free = zvol_free,
|
||
|
.zv_rename_minor = zvol_rename_minor,
|
||
|
.zv_create_minor = zvol_os_create_minor,
|
||
|
.zv_update_volsize = zvol_update_volsize,
|
||
|
.zv_clear_private = zvol_clear_private,
|
||
|
.zv_is_zvol = zvol_is_zvol_impl,
|
||
|
.zv_set_disk_ro = zvol_set_disk_ro_impl,
|
||
|
.zv_set_capacity = zvol_set_capacity_impl,
|
||
|
};
|
||
|
|
||
|
int
|
||
|
zvol_init(void)
|
||
|
{
|
||
|
int error;
|
||
|
int threads = MIN(MAX(zvol_threads, 1), 1024);
|
||
|
|
||
|
error = register_blkdev(zvol_major, ZVOL_DRIVER);
|
||
|
if (error) {
|
||
|
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
|
||
|
return (error);
|
||
|
}
|
||
|
zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
|
||
|
threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
|
||
|
if (zvol_taskq == NULL) {
|
||
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
||
|
return (-ENOMEM);
|
||
|
}
|
||
|
zvol_init_impl();
|
||
|
blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
|
||
|
THIS_MODULE, zvol_probe, NULL, NULL);
|
||
|
|
||
|
ida_init(&zvol_ida);
|
||
|
zvol_register_ops(&zvol_linux_ops);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zvol_fini(void)
|
||
|
{
|
||
|
zvol_fini_impl();
|
||
|
blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
|
||
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
||
|
taskq_destroy(zvol_taskq);
|
||
|
ida_destroy(&zvol_ida);
|
||
|
}
|
||
|
|
||
|
/* BEGIN CSTYLED */
|
||
|
module_param(zvol_inhibit_dev, uint, 0644);
|
||
|
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
|
||
|
|
||
|
module_param(zvol_major, uint, 0444);
|
||
|
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
|
||
|
|
||
|
module_param(zvol_threads, uint, 0444);
|
||
|
MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
|
||
|
|
||
|
module_param(zvol_request_sync, uint, 0644);
|
||
|
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
|
||
|
|
||
|
module_param(zvol_max_discard_blocks, ulong, 0444);
|
||
|
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
|
||
|
|
||
|
module_param(zvol_prefetch_bytes, uint, 0644);
|
||
|
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
|
||
|
|
||
|
module_param(zvol_volmode, uint, 0644);
|
||
|
MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
|
||
|
/* END CSTYLED */
|