1075 lines
29 KiB
C
1075 lines
29 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
|
||
|
* Copyright (c) 2019 by Delphix. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* See abd.c for a general overview of the arc buffered data (ABD).
|
||
|
*
|
||
|
* Linear buffers act exactly like normal buffers and are always mapped into the
|
||
|
* kernel's virtual memory space, while scattered ABD data chunks are allocated
|
||
|
* as physical pages and then mapped in only while they are actually being
|
||
|
* accessed through one of the abd_* library functions. Using scattered ABDs
|
||
|
* provides several benefits:
|
||
|
*
|
||
|
* (1) They avoid use of kmem_*, preventing performance problems where running
|
||
|
* kmem_reap on very large memory systems never finishes and causes
|
||
|
* constant TLB shootdowns.
|
||
|
*
|
||
|
* (2) Fragmentation is less of an issue since when we are at the limit of
|
||
|
* allocatable space, we won't have to search around for a long free
|
||
|
* hole in the VA space for large ARC allocations. Each chunk is mapped in
|
||
|
* individually, so even if we are using HIGHMEM (see next point) we
|
||
|
* wouldn't need to worry about finding a contiguous address range.
|
||
|
*
|
||
|
* (3) If we are not using HIGHMEM, then all physical memory is always
|
||
|
* mapped into the kernel's address space, so we also avoid the map /
|
||
|
* unmap costs on each ABD access.
|
||
|
*
|
||
|
* If we are not using HIGHMEM, scattered buffers which have only one chunk
|
||
|
* can be treated as linear buffers, because they are contiguous in the
|
||
|
* kernel's virtual address space. See abd_alloc_chunks() for details.
|
||
|
*/
|
||
|
|
||
|
#include <sys/abd_impl.h>
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/zio.h>
|
||
|
#include <sys/arc.h>
|
||
|
#include <sys/zfs_context.h>
|
||
|
#include <sys/zfs_znode.h>
|
||
|
#ifdef _KERNEL
|
||
|
#include <linux/kmap_compat.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#else
|
||
|
#define MAX_ORDER 1
|
||
|
#endif
|
||
|
|
||
|
typedef struct abd_stats {
|
||
|
kstat_named_t abdstat_struct_size;
|
||
|
kstat_named_t abdstat_linear_cnt;
|
||
|
kstat_named_t abdstat_linear_data_size;
|
||
|
kstat_named_t abdstat_scatter_cnt;
|
||
|
kstat_named_t abdstat_scatter_data_size;
|
||
|
kstat_named_t abdstat_scatter_chunk_waste;
|
||
|
kstat_named_t abdstat_scatter_orders[MAX_ORDER];
|
||
|
kstat_named_t abdstat_scatter_page_multi_chunk;
|
||
|
kstat_named_t abdstat_scatter_page_multi_zone;
|
||
|
kstat_named_t abdstat_scatter_page_alloc_retry;
|
||
|
kstat_named_t abdstat_scatter_sg_table_retry;
|
||
|
} abd_stats_t;
|
||
|
|
||
|
static abd_stats_t abd_stats = {
|
||
|
/* Amount of memory occupied by all of the abd_t struct allocations */
|
||
|
{ "struct_size", KSTAT_DATA_UINT64 },
|
||
|
/*
|
||
|
* The number of linear ABDs which are currently allocated, excluding
|
||
|
* ABDs which don't own their data (for instance the ones which were
|
||
|
* allocated through abd_get_offset() and abd_get_from_buf()). If an
|
||
|
* ABD takes ownership of its buf then it will become tracked.
|
||
|
*/
|
||
|
{ "linear_cnt", KSTAT_DATA_UINT64 },
|
||
|
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
|
||
|
{ "linear_data_size", KSTAT_DATA_UINT64 },
|
||
|
/*
|
||
|
* The number of scatter ABDs which are currently allocated, excluding
|
||
|
* ABDs which don't own their data (for instance the ones which were
|
||
|
* allocated through abd_get_offset()).
|
||
|
*/
|
||
|
{ "scatter_cnt", KSTAT_DATA_UINT64 },
|
||
|
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
|
||
|
{ "scatter_data_size", KSTAT_DATA_UINT64 },
|
||
|
/*
|
||
|
* The amount of space wasted at the end of the last chunk across all
|
||
|
* scatter ABDs tracked by scatter_cnt.
|
||
|
*/
|
||
|
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
|
||
|
/*
|
||
|
* The number of compound allocations of a given order. These
|
||
|
* allocations are spread over all currently allocated ABDs, and
|
||
|
* act as a measure of memory fragmentation.
|
||
|
*/
|
||
|
{ { "scatter_order_N", KSTAT_DATA_UINT64 } },
|
||
|
/*
|
||
|
* The number of scatter ABDs which contain multiple chunks.
|
||
|
* ABDs are preferentially allocated from the minimum number of
|
||
|
* contiguous multi-page chunks, a single chunk is optimal.
|
||
|
*/
|
||
|
{ "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
|
||
|
/*
|
||
|
* The number of scatter ABDs which are split across memory zones.
|
||
|
* ABDs are preferentially allocated using pages from a single zone.
|
||
|
*/
|
||
|
{ "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
|
||
|
/*
|
||
|
* The total number of retries encountered when attempting to
|
||
|
* allocate the pages to populate the scatter ABD.
|
||
|
*/
|
||
|
{ "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
|
||
|
/*
|
||
|
* The total number of retries encountered when attempting to
|
||
|
* allocate the sg table for an ABD.
|
||
|
*/
|
||
|
{ "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
|
||
|
};
|
||
|
|
||
|
#define abd_for_each_sg(abd, sg, n, i) \
|
||
|
for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
|
||
|
|
||
|
unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
|
||
|
|
||
|
/*
|
||
|
* zfs_abd_scatter_min_size is the minimum allocation size to use scatter
|
||
|
* ABD's. Smaller allocations will use linear ABD's which uses
|
||
|
* zio_[data_]buf_alloc().
|
||
|
*
|
||
|
* Scatter ABD's use at least one page each, so sub-page allocations waste
|
||
|
* some space when allocated as scatter (e.g. 2KB scatter allocation wastes
|
||
|
* half of each page). Using linear ABD's for small allocations means that
|
||
|
* they will be put on slabs which contain many allocations. This can
|
||
|
* improve memory efficiency, but it also makes it much harder for ARC
|
||
|
* evictions to actually free pages, because all the buffers on one slab need
|
||
|
* to be freed in order for the slab (and underlying pages) to be freed.
|
||
|
* Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
|
||
|
* possible for them to actually waste more memory than scatter (one page per
|
||
|
* buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
|
||
|
*
|
||
|
* Spill blocks are typically 512B and are heavily used on systems running
|
||
|
* selinux with the default dnode size and the `xattr=sa` property set.
|
||
|
*
|
||
|
* By default we use linear allocations for 512B and 1KB, and scatter
|
||
|
* allocations for larger (1.5KB and up).
|
||
|
*/
|
||
|
int zfs_abd_scatter_min_size = 512 * 3;
|
||
|
|
||
|
/*
|
||
|
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
|
||
|
* just a single zero'd page. This allows us to conserve memory by
|
||
|
* only using a single zero page for the scatterlist.
|
||
|
*/
|
||
|
abd_t *abd_zero_scatter = NULL;
|
||
|
|
||
|
struct page;
|
||
|
/*
|
||
|
* abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is
|
||
|
* assigned to set each of the pages of abd_zero_scatter.
|
||
|
*/
|
||
|
static struct page *abd_zero_page = NULL;
|
||
|
|
||
|
static kmem_cache_t *abd_cache = NULL;
|
||
|
static kstat_t *abd_ksp;
|
||
|
|
||
|
static size_t
|
||
|
abd_chunkcnt_for_bytes(size_t size)
|
||
|
{
|
||
|
return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
|
||
|
}
|
||
|
|
||
|
abd_t *
|
||
|
abd_alloc_struct(size_t size)
|
||
|
{
|
||
|
/*
|
||
|
* In Linux we do not use the size passed in during ABD
|
||
|
* allocation, so we just ignore it.
|
||
|
*/
|
||
|
abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
|
||
|
ASSERT3P(abd, !=, NULL);
|
||
|
list_link_init(&abd->abd_gang_link);
|
||
|
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
|
||
|
ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
|
||
|
|
||
|
return (abd);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_free_struct(abd_t *abd)
|
||
|
{
|
||
|
mutex_destroy(&abd->abd_mtx);
|
||
|
ASSERT(!list_link_active(&abd->abd_gang_link));
|
||
|
kmem_cache_free(abd_cache, abd);
|
||
|
ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
|
||
|
}
|
||
|
|
||
|
#ifdef _KERNEL
|
||
|
/*
|
||
|
* Mark zfs data pages so they can be excluded from kernel crash dumps
|
||
|
*/
|
||
|
#ifdef _LP64
|
||
|
#define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
|
||
|
|
||
|
static inline void
|
||
|
abd_mark_zfs_page(struct page *page)
|
||
|
{
|
||
|
get_page(page);
|
||
|
SetPagePrivate(page);
|
||
|
set_page_private(page, ABD_FILE_CACHE_PAGE);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
abd_unmark_zfs_page(struct page *page)
|
||
|
{
|
||
|
set_page_private(page, 0UL);
|
||
|
ClearPagePrivate(page);
|
||
|
put_page(page);
|
||
|
}
|
||
|
#else
|
||
|
#define abd_mark_zfs_page(page)
|
||
|
#define abd_unmark_zfs_page(page)
|
||
|
#endif /* _LP64 */
|
||
|
|
||
|
#ifndef CONFIG_HIGHMEM
|
||
|
|
||
|
#ifndef __GFP_RECLAIM
|
||
|
#define __GFP_RECLAIM __GFP_WAIT
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* The goal is to minimize fragmentation by preferentially populating ABDs
|
||
|
* with higher order compound pages from a single zone. Allocation size is
|
||
|
* progressively decreased until it can be satisfied without performing
|
||
|
* reclaim or compaction. When necessary this function will degenerate to
|
||
|
* allocating individual pages and allowing reclaim to satisfy allocations.
|
||
|
*/
|
||
|
void
|
||
|
abd_alloc_chunks(abd_t *abd, size_t size)
|
||
|
{
|
||
|
struct list_head pages;
|
||
|
struct sg_table table;
|
||
|
struct scatterlist *sg;
|
||
|
struct page *page, *tmp_page = NULL;
|
||
|
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
|
||
|
gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
|
||
|
int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
|
||
|
int nr_pages = abd_chunkcnt_for_bytes(size);
|
||
|
int chunks = 0, zones = 0;
|
||
|
size_t remaining_size;
|
||
|
int nid = NUMA_NO_NODE;
|
||
|
int alloc_pages = 0;
|
||
|
|
||
|
INIT_LIST_HEAD(&pages);
|
||
|
|
||
|
while (alloc_pages < nr_pages) {
|
||
|
unsigned chunk_pages;
|
||
|
int order;
|
||
|
|
||
|
order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
|
||
|
chunk_pages = (1U << order);
|
||
|
|
||
|
page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
|
||
|
if (page == NULL) {
|
||
|
if (order == 0) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
|
||
|
schedule_timeout_interruptible(1);
|
||
|
} else {
|
||
|
max_order = MAX(0, order - 1);
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
list_add_tail(&page->lru, &pages);
|
||
|
|
||
|
if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
|
||
|
zones++;
|
||
|
|
||
|
nid = page_to_nid(page);
|
||
|
ABDSTAT_BUMP(abdstat_scatter_orders[order]);
|
||
|
chunks++;
|
||
|
alloc_pages += chunk_pages;
|
||
|
}
|
||
|
|
||
|
ASSERT3S(alloc_pages, ==, nr_pages);
|
||
|
|
||
|
while (sg_alloc_table(&table, chunks, gfp)) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
|
||
|
schedule_timeout_interruptible(1);
|
||
|
}
|
||
|
|
||
|
sg = table.sgl;
|
||
|
remaining_size = size;
|
||
|
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
|
||
|
size_t sg_size = MIN(PAGESIZE << compound_order(page),
|
||
|
remaining_size);
|
||
|
sg_set_page(sg, page, sg_size, 0);
|
||
|
abd_mark_zfs_page(page);
|
||
|
remaining_size -= sg_size;
|
||
|
|
||
|
sg = sg_next(sg);
|
||
|
list_del(&page->lru);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These conditions ensure that a possible transformation to a linear
|
||
|
* ABD would be valid.
|
||
|
*/
|
||
|
ASSERT(!PageHighMem(sg_page(table.sgl)));
|
||
|
ASSERT0(ABD_SCATTER(abd).abd_offset);
|
||
|
|
||
|
if (table.nents == 1) {
|
||
|
/*
|
||
|
* Since there is only one entry, this ABD can be represented
|
||
|
* as a linear buffer. All single-page (4K) ABD's can be
|
||
|
* represented this way. Some multi-page ABD's can also be
|
||
|
* represented this way, if we were able to allocate a single
|
||
|
* "chunk" (higher-order "page" which represents a power-of-2
|
||
|
* series of physically-contiguous pages). This is often the
|
||
|
* case for 2-page (8K) ABD's.
|
||
|
*
|
||
|
* Representing a single-entry scatter ABD as a linear ABD
|
||
|
* has the performance advantage of avoiding the copy (and
|
||
|
* allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
|
||
|
* A performance increase of around 5% has been observed for
|
||
|
* ARC-cached reads (of small blocks which can take advantage
|
||
|
* of this).
|
||
|
*
|
||
|
* Note that this optimization is only possible because the
|
||
|
* pages are always mapped into the kernel's address space.
|
||
|
* This is not the case for highmem pages, so the
|
||
|
* optimization can not be made there.
|
||
|
*/
|
||
|
abd->abd_flags |= ABD_FLAG_LINEAR;
|
||
|
abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
|
||
|
abd->abd_u.abd_linear.abd_sgl = table.sgl;
|
||
|
ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
|
||
|
} else if (table.nents > 1) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
||
|
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
|
||
|
|
||
|
if (zones) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
|
||
|
abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
|
||
|
}
|
||
|
|
||
|
ABD_SCATTER(abd).abd_sgl = table.sgl;
|
||
|
ABD_SCATTER(abd).abd_nents = table.nents;
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/*
|
||
|
* Allocate N individual pages to construct a scatter ABD. This function
|
||
|
* makes no attempt to request contiguous pages and requires the minimal
|
||
|
* number of kernel interfaces. It's designed for maximum compatibility.
|
||
|
*/
|
||
|
void
|
||
|
abd_alloc_chunks(abd_t *abd, size_t size)
|
||
|
{
|
||
|
struct scatterlist *sg = NULL;
|
||
|
struct sg_table table;
|
||
|
struct page *page;
|
||
|
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
|
||
|
int nr_pages = abd_chunkcnt_for_bytes(size);
|
||
|
int i = 0;
|
||
|
|
||
|
while (sg_alloc_table(&table, nr_pages, gfp)) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
|
||
|
schedule_timeout_interruptible(1);
|
||
|
}
|
||
|
|
||
|
ASSERT3U(table.nents, ==, nr_pages);
|
||
|
ABD_SCATTER(abd).abd_sgl = table.sgl;
|
||
|
ABD_SCATTER(abd).abd_nents = nr_pages;
|
||
|
|
||
|
abd_for_each_sg(abd, sg, nr_pages, i) {
|
||
|
while ((page = __page_cache_alloc(gfp)) == NULL) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
|
||
|
schedule_timeout_interruptible(1);
|
||
|
}
|
||
|
|
||
|
ABDSTAT_BUMP(abdstat_scatter_orders[0]);
|
||
|
sg_set_page(sg, page, PAGESIZE, 0);
|
||
|
abd_mark_zfs_page(page);
|
||
|
}
|
||
|
|
||
|
if (nr_pages > 1) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
||
|
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
|
||
|
}
|
||
|
}
|
||
|
#endif /* !CONFIG_HIGHMEM */
|
||
|
|
||
|
/*
|
||
|
* This must be called if any of the sg_table allocation functions
|
||
|
* are called.
|
||
|
*/
|
||
|
static void
|
||
|
abd_free_sg_table(abd_t *abd)
|
||
|
{
|
||
|
struct sg_table table;
|
||
|
|
||
|
table.sgl = ABD_SCATTER(abd).abd_sgl;
|
||
|
table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
|
||
|
sg_free_table(&table);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_free_chunks(abd_t *abd)
|
||
|
{
|
||
|
struct scatterlist *sg = NULL;
|
||
|
struct page *page;
|
||
|
int nr_pages = ABD_SCATTER(abd).abd_nents;
|
||
|
int order, i = 0;
|
||
|
|
||
|
if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
|
||
|
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
|
||
|
|
||
|
if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
|
||
|
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
|
||
|
|
||
|
abd_for_each_sg(abd, sg, nr_pages, i) {
|
||
|
page = sg_page(sg);
|
||
|
abd_unmark_zfs_page(page);
|
||
|
order = compound_order(page);
|
||
|
__free_pages(page, order);
|
||
|
ASSERT3U(sg->length, <=, PAGE_SIZE << order);
|
||
|
ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
|
||
|
}
|
||
|
abd_free_sg_table(abd);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
|
||
|
* the scatterlist will be set to the zero'd out buffer abd_zero_page.
|
||
|
*/
|
||
|
static void
|
||
|
abd_alloc_zero_scatter(void)
|
||
|
{
|
||
|
struct scatterlist *sg = NULL;
|
||
|
struct sg_table table;
|
||
|
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
|
||
|
gfp_t gfp_zero_page = gfp | __GFP_ZERO;
|
||
|
int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
|
||
|
int i = 0;
|
||
|
|
||
|
while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
|
||
|
schedule_timeout_interruptible(1);
|
||
|
}
|
||
|
abd_mark_zfs_page(abd_zero_page);
|
||
|
|
||
|
while (sg_alloc_table(&table, nr_pages, gfp)) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
|
||
|
schedule_timeout_interruptible(1);
|
||
|
}
|
||
|
ASSERT3U(table.nents, ==, nr_pages);
|
||
|
|
||
|
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
|
||
|
abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
|
||
|
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
|
||
|
ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
|
||
|
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
|
||
|
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
|
||
|
abd_zero_scatter->abd_parent = NULL;
|
||
|
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
|
||
|
zfs_refcount_create(&abd_zero_scatter->abd_children);
|
||
|
|
||
|
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
|
||
|
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
|
||
|
}
|
||
|
|
||
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
||
|
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
||
|
}
|
||
|
|
||
|
#else /* _KERNEL */
|
||
|
|
||
|
#ifndef PAGE_SHIFT
|
||
|
#define PAGE_SHIFT (highbit64(PAGESIZE)-1)
|
||
|
#endif
|
||
|
|
||
|
#define zfs_kmap_atomic(chunk, km) ((void *)chunk)
|
||
|
#define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0)
|
||
|
#define local_irq_save(flags) do { (void)(flags); } while (0)
|
||
|
#define local_irq_restore(flags) do { (void)(flags); } while (0)
|
||
|
#define nth_page(pg, i) \
|
||
|
((struct page *)((void *)(pg) + (i) * PAGESIZE))
|
||
|
|
||
|
struct scatterlist {
|
||
|
struct page *page;
|
||
|
int length;
|
||
|
int end;
|
||
|
};
|
||
|
|
||
|
static void
|
||
|
sg_init_table(struct scatterlist *sg, int nr)
|
||
|
{
|
||
|
memset(sg, 0, nr * sizeof (struct scatterlist));
|
||
|
sg[nr - 1].end = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This must be called if any of the sg_table allocation functions
|
||
|
* are called.
|
||
|
*/
|
||
|
static void
|
||
|
abd_free_sg_table(abd_t *abd)
|
||
|
{
|
||
|
int nents = ABD_SCATTER(abd).abd_nents;
|
||
|
vmem_free(ABD_SCATTER(abd).abd_sgl,
|
||
|
nents * sizeof (struct scatterlist));
|
||
|
}
|
||
|
|
||
|
#define for_each_sg(sgl, sg, nr, i) \
|
||
|
for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
|
||
|
|
||
|
static inline void
|
||
|
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
|
||
|
unsigned int offset)
|
||
|
{
|
||
|
/* currently we don't use offset */
|
||
|
ASSERT(offset == 0);
|
||
|
sg->page = page;
|
||
|
sg->length = len;
|
||
|
}
|
||
|
|
||
|
static inline struct page *
|
||
|
sg_page(struct scatterlist *sg)
|
||
|
{
|
||
|
return (sg->page);
|
||
|
}
|
||
|
|
||
|
static inline struct scatterlist *
|
||
|
sg_next(struct scatterlist *sg)
|
||
|
{
|
||
|
if (sg->end)
|
||
|
return (NULL);
|
||
|
|
||
|
return (sg + 1);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_alloc_chunks(abd_t *abd, size_t size)
|
||
|
{
|
||
|
unsigned nr_pages = abd_chunkcnt_for_bytes(size);
|
||
|
struct scatterlist *sg;
|
||
|
int i;
|
||
|
|
||
|
ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
|
||
|
sizeof (struct scatterlist), KM_SLEEP);
|
||
|
sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
|
||
|
|
||
|
abd_for_each_sg(abd, sg, nr_pages, i) {
|
||
|
struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
||
|
sg_set_page(sg, p, PAGESIZE, 0);
|
||
|
}
|
||
|
ABD_SCATTER(abd).abd_nents = nr_pages;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_free_chunks(abd_t *abd)
|
||
|
{
|
||
|
int i, n = ABD_SCATTER(abd).abd_nents;
|
||
|
struct scatterlist *sg;
|
||
|
|
||
|
abd_for_each_sg(abd, sg, n, i) {
|
||
|
for (int j = 0; j < sg->length; j += PAGESIZE) {
|
||
|
struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
|
||
|
umem_free(p, PAGESIZE);
|
||
|
}
|
||
|
}
|
||
|
abd_free_sg_table(abd);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
abd_alloc_zero_scatter(void)
|
||
|
{
|
||
|
unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
|
||
|
struct scatterlist *sg;
|
||
|
int i;
|
||
|
|
||
|
abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
||
|
memset(abd_zero_page, 0, PAGESIZE);
|
||
|
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
|
||
|
abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
|
||
|
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
|
||
|
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
|
||
|
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
|
||
|
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
|
||
|
abd_zero_scatter->abd_parent = NULL;
|
||
|
zfs_refcount_create(&abd_zero_scatter->abd_children);
|
||
|
ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
|
||
|
sizeof (struct scatterlist), KM_SLEEP);
|
||
|
|
||
|
sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
|
||
|
|
||
|
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
|
||
|
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
|
||
|
}
|
||
|
|
||
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
||
|
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
|
||
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
||
|
}
|
||
|
|
||
|
#endif /* _KERNEL */
|
||
|
|
||
|
boolean_t
|
||
|
abd_size_alloc_linear(size_t size)
|
||
|
{
|
||
|
return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
|
||
|
{
|
||
|
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
||
|
int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
|
||
|
if (op == ABDSTAT_INCR) {
|
||
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
||
|
ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
|
||
|
ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
|
||
|
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
||
|
} else {
|
||
|
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
|
||
|
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
|
||
|
ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
|
||
|
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
|
||
|
{
|
||
|
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
||
|
if (op == ABDSTAT_INCR) {
|
||
|
ABDSTAT_BUMP(abdstat_linear_cnt);
|
||
|
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
|
||
|
} else {
|
||
|
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
|
||
|
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_verify_scatter(abd_t *abd)
|
||
|
{
|
||
|
size_t n;
|
||
|
int i = 0;
|
||
|
struct scatterlist *sg = NULL;
|
||
|
|
||
|
ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
|
||
|
ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
|
||
|
ABD_SCATTER(abd).abd_sgl->length);
|
||
|
n = ABD_SCATTER(abd).abd_nents;
|
||
|
abd_for_each_sg(abd, sg, n, i) {
|
||
|
ASSERT3P(sg_page(sg), !=, NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
abd_free_zero_scatter(void)
|
||
|
{
|
||
|
zfs_refcount_destroy(&abd_zero_scatter->abd_children);
|
||
|
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
|
||
|
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
|
||
|
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
|
||
|
|
||
|
abd_free_sg_table(abd_zero_scatter);
|
||
|
abd_free_struct(abd_zero_scatter);
|
||
|
abd_zero_scatter = NULL;
|
||
|
ASSERT3P(abd_zero_page, !=, NULL);
|
||
|
#if defined(_KERNEL)
|
||
|
abd_unmark_zfs_page(abd_zero_page);
|
||
|
__free_page(abd_zero_page);
|
||
|
#else
|
||
|
umem_free(abd_zero_page, PAGESIZE);
|
||
|
#endif /* _KERNEL */
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_init(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
|
||
|
0, NULL, NULL, NULL, NULL, NULL, 0);
|
||
|
|
||
|
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
|
||
|
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
||
|
if (abd_ksp != NULL) {
|
||
|
for (i = 0; i < MAX_ORDER; i++) {
|
||
|
snprintf(abd_stats.abdstat_scatter_orders[i].name,
|
||
|
KSTAT_STRLEN, "scatter_order_%d", i);
|
||
|
abd_stats.abdstat_scatter_orders[i].data_type =
|
||
|
KSTAT_DATA_UINT64;
|
||
|
}
|
||
|
abd_ksp->ks_data = &abd_stats;
|
||
|
kstat_install(abd_ksp);
|
||
|
}
|
||
|
|
||
|
abd_alloc_zero_scatter();
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_fini(void)
|
||
|
{
|
||
|
abd_free_zero_scatter();
|
||
|
|
||
|
if (abd_ksp != NULL) {
|
||
|
kstat_delete(abd_ksp);
|
||
|
abd_ksp = NULL;
|
||
|
}
|
||
|
|
||
|
if (abd_cache) {
|
||
|
kmem_cache_destroy(abd_cache);
|
||
|
abd_cache = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_free_linear_page(abd_t *abd)
|
||
|
{
|
||
|
/* Transform it back into a scatter ABD for freeing */
|
||
|
struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
|
||
|
abd->abd_flags &= ~ABD_FLAG_LINEAR;
|
||
|
abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
|
||
|
ABD_SCATTER(abd).abd_nents = 1;
|
||
|
ABD_SCATTER(abd).abd_offset = 0;
|
||
|
ABD_SCATTER(abd).abd_sgl = sg;
|
||
|
abd_free_chunks(abd);
|
||
|
|
||
|
zfs_refcount_destroy(&abd->abd_children);
|
||
|
abd_update_scatter_stats(abd, ABDSTAT_DECR);
|
||
|
abd_free_struct(abd);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we're going to use this ABD for doing I/O using the block layer, the
|
||
|
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
|
||
|
* plan to store this ABD in memory for a long period of time, we should
|
||
|
* allocate the ABD type that requires the least data copying to do the I/O.
|
||
|
*
|
||
|
* On Linux the optimal thing to do would be to use abd_get_offset() and
|
||
|
* construct a new ABD which shares the original pages thereby eliminating
|
||
|
* the copy. But for the moment a new linear ABD is allocated until this
|
||
|
* performance optimization can be implemented.
|
||
|
*/
|
||
|
abd_t *
|
||
|
abd_alloc_for_io(size_t size, boolean_t is_metadata)
|
||
|
{
|
||
|
return (abd_alloc(size, is_metadata));
|
||
|
}
|
||
|
|
||
|
abd_t *
|
||
|
abd_get_offset_scatter(abd_t *sabd, size_t off)
|
||
|
{
|
||
|
abd_t *abd = NULL;
|
||
|
int i = 0;
|
||
|
struct scatterlist *sg = NULL;
|
||
|
|
||
|
abd_verify(sabd);
|
||
|
ASSERT3U(off, <=, sabd->abd_size);
|
||
|
|
||
|
size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
|
||
|
|
||
|
abd = abd_alloc_struct(0);
|
||
|
|
||
|
/*
|
||
|
* Even if this buf is filesystem metadata, we only track that
|
||
|
* if we own the underlying data buffer, which is not true in
|
||
|
* this case. Therefore, we don't ever use ABD_FLAG_META here.
|
||
|
*/
|
||
|
abd->abd_flags = 0;
|
||
|
|
||
|
abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
|
||
|
if (new_offset < sg->length)
|
||
|
break;
|
||
|
new_offset -= sg->length;
|
||
|
}
|
||
|
|
||
|
ABD_SCATTER(abd).abd_sgl = sg;
|
||
|
ABD_SCATTER(abd).abd_offset = new_offset;
|
||
|
ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
|
||
|
|
||
|
return (abd);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the abd_iter.
|
||
|
*/
|
||
|
void
|
||
|
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
|
||
|
{
|
||
|
ASSERT(!abd_is_gang(abd));
|
||
|
abd_verify(abd);
|
||
|
aiter->iter_abd = abd;
|
||
|
aiter->iter_mapaddr = NULL;
|
||
|
aiter->iter_mapsize = 0;
|
||
|
aiter->iter_pos = 0;
|
||
|
if (abd_is_linear(abd)) {
|
||
|
aiter->iter_offset = 0;
|
||
|
aiter->iter_sg = NULL;
|
||
|
} else {
|
||
|
aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
|
||
|
aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is just a helper function to see if we have exhausted the
|
||
|
* abd_iter and reached the end.
|
||
|
*/
|
||
|
boolean_t
|
||
|
abd_iter_at_end(struct abd_iter *aiter)
|
||
|
{
|
||
|
return (aiter->iter_pos == aiter->iter_abd->abd_size);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Advance the iterator by a certain amount. Cannot be called when a chunk is
|
||
|
* in use. This can be safely called when the aiter has already exhausted, in
|
||
|
* which case this does nothing.
|
||
|
*/
|
||
|
void
|
||
|
abd_iter_advance(struct abd_iter *aiter, size_t amount)
|
||
|
{
|
||
|
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
||
|
ASSERT0(aiter->iter_mapsize);
|
||
|
|
||
|
/* There's nothing left to advance to, so do nothing */
|
||
|
if (abd_iter_at_end(aiter))
|
||
|
return;
|
||
|
|
||
|
aiter->iter_pos += amount;
|
||
|
aiter->iter_offset += amount;
|
||
|
if (!abd_is_linear(aiter->iter_abd)) {
|
||
|
while (aiter->iter_offset >= aiter->iter_sg->length) {
|
||
|
aiter->iter_offset -= aiter->iter_sg->length;
|
||
|
aiter->iter_sg = sg_next(aiter->iter_sg);
|
||
|
if (aiter->iter_sg == NULL) {
|
||
|
ASSERT0(aiter->iter_offset);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Map the current chunk into aiter. This can be safely called when the aiter
|
||
|
* has already exhausted, in which case this does nothing.
|
||
|
*/
|
||
|
void
|
||
|
abd_iter_map(struct abd_iter *aiter)
|
||
|
{
|
||
|
void *paddr;
|
||
|
size_t offset = 0;
|
||
|
|
||
|
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
||
|
ASSERT0(aiter->iter_mapsize);
|
||
|
|
||
|
/* There's nothing left to iterate over, so do nothing */
|
||
|
if (abd_iter_at_end(aiter))
|
||
|
return;
|
||
|
|
||
|
if (abd_is_linear(aiter->iter_abd)) {
|
||
|
ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
|
||
|
offset = aiter->iter_offset;
|
||
|
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
|
||
|
paddr = ABD_LINEAR_BUF(aiter->iter_abd);
|
||
|
} else {
|
||
|
offset = aiter->iter_offset;
|
||
|
aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
|
||
|
aiter->iter_abd->abd_size - aiter->iter_pos);
|
||
|
|
||
|
paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg),
|
||
|
km_table[aiter->iter_km]);
|
||
|
}
|
||
|
|
||
|
aiter->iter_mapaddr = (char *)paddr + offset;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Unmap the current chunk from aiter. This can be safely called when the aiter
|
||
|
* has already exhausted, in which case this does nothing.
|
||
|
*/
|
||
|
void
|
||
|
abd_iter_unmap(struct abd_iter *aiter)
|
||
|
{
|
||
|
/* There's nothing left to unmap, so do nothing */
|
||
|
if (abd_iter_at_end(aiter))
|
||
|
return;
|
||
|
|
||
|
if (!abd_is_linear(aiter->iter_abd)) {
|
||
|
/* LINTED E_FUNC_SET_NOT_USED */
|
||
|
zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset,
|
||
|
km_table[aiter->iter_km]);
|
||
|
}
|
||
|
|
||
|
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
|
||
|
ASSERT3U(aiter->iter_mapsize, >, 0);
|
||
|
|
||
|
aiter->iter_mapaddr = NULL;
|
||
|
aiter->iter_mapsize = 0;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
abd_cache_reap_now(void)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#if defined(_KERNEL)
|
||
|
/*
|
||
|
* bio_nr_pages for ABD.
|
||
|
* @off is the offset in @abd
|
||
|
*/
|
||
|
unsigned long
|
||
|
abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
|
||
|
{
|
||
|
unsigned long pos;
|
||
|
|
||
|
while (abd_is_gang(abd))
|
||
|
abd = abd_gang_get_offset(abd, &off);
|
||
|
|
||
|
ASSERT(!abd_is_gang(abd));
|
||
|
if (abd_is_linear(abd))
|
||
|
pos = (unsigned long)abd_to_buf(abd) + off;
|
||
|
else
|
||
|
pos = ABD_SCATTER(abd).abd_offset + off;
|
||
|
|
||
|
return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
|
||
|
(pos >> PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
static unsigned int
|
||
|
bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
|
||
|
{
|
||
|
unsigned int offset, size, i;
|
||
|
struct page *page;
|
||
|
|
||
|
offset = offset_in_page(buf_ptr);
|
||
|
for (i = 0; i < bio->bi_max_vecs; i++) {
|
||
|
size = PAGE_SIZE - offset;
|
||
|
|
||
|
if (bio_size <= 0)
|
||
|
break;
|
||
|
|
||
|
if (size > bio_size)
|
||
|
size = bio_size;
|
||
|
|
||
|
if (is_vmalloc_addr(buf_ptr))
|
||
|
page = vmalloc_to_page(buf_ptr);
|
||
|
else
|
||
|
page = virt_to_page(buf_ptr);
|
||
|
|
||
|
/*
|
||
|
* Some network related block device uses tcp_sendpage, which
|
||
|
* doesn't behave well when using 0-count page, this is a
|
||
|
* safety net to catch them.
|
||
|
*/
|
||
|
ASSERT3S(page_count(page), >, 0);
|
||
|
|
||
|
if (bio_add_page(bio, page, size, offset) != size)
|
||
|
break;
|
||
|
|
||
|
buf_ptr += size;
|
||
|
bio_size -= size;
|
||
|
offset = 0;
|
||
|
}
|
||
|
|
||
|
return (bio_size);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* bio_map for gang ABD.
|
||
|
*/
|
||
|
static unsigned int
|
||
|
abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
|
||
|
unsigned int io_size, size_t off)
|
||
|
{
|
||
|
ASSERT(abd_is_gang(abd));
|
||
|
|
||
|
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
|
||
|
cabd != NULL;
|
||
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
|
||
|
ASSERT3U(off, <, cabd->abd_size);
|
||
|
int size = MIN(io_size, cabd->abd_size - off);
|
||
|
int remainder = abd_bio_map_off(bio, cabd, size, off);
|
||
|
io_size -= (size - remainder);
|
||
|
if (io_size == 0 || remainder > 0)
|
||
|
return (io_size);
|
||
|
off = 0;
|
||
|
}
|
||
|
ASSERT0(io_size);
|
||
|
return (io_size);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* bio_map for ABD.
|
||
|
* @off is the offset in @abd
|
||
|
* Remaining IO size is returned
|
||
|
*/
|
||
|
unsigned int
|
||
|
abd_bio_map_off(struct bio *bio, abd_t *abd,
|
||
|
unsigned int io_size, size_t off)
|
||
|
{
|
||
|
int i;
|
||
|
struct abd_iter aiter;
|
||
|
|
||
|
ASSERT3U(io_size, <=, abd->abd_size - off);
|
||
|
if (abd_is_linear(abd))
|
||
|
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
|
||
|
|
||
|
ASSERT(!abd_is_linear(abd));
|
||
|
if (abd_is_gang(abd))
|
||
|
return (abd_gang_bio_map_off(bio, abd, io_size, off));
|
||
|
|
||
|
abd_iter_init(&aiter, abd);
|
||
|
abd_iter_advance(&aiter, off);
|
||
|
|
||
|
for (i = 0; i < bio->bi_max_vecs; i++) {
|
||
|
struct page *pg;
|
||
|
size_t len, sgoff, pgoff;
|
||
|
struct scatterlist *sg;
|
||
|
|
||
|
if (io_size <= 0)
|
||
|
break;
|
||
|
|
||
|
sg = aiter.iter_sg;
|
||
|
sgoff = aiter.iter_offset;
|
||
|
pgoff = sgoff & (PAGESIZE - 1);
|
||
|
len = MIN(io_size, PAGESIZE - pgoff);
|
||
|
ASSERT(len > 0);
|
||
|
|
||
|
pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
|
||
|
if (bio_add_page(bio, pg, len, pgoff) != len)
|
||
|
break;
|
||
|
|
||
|
io_size -= len;
|
||
|
abd_iter_advance(&aiter, len);
|
||
|
}
|
||
|
|
||
|
return (io_size);
|
||
|
}
|
||
|
|
||
|
/* Tunable Parameters */
|
||
|
module_param(zfs_abd_scatter_enabled, int, 0644);
|
||
|
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
|
||
|
"Toggle whether ABD allocations must be linear.");
|
||
|
module_param(zfs_abd_scatter_min_size, int, 0644);
|
||
|
MODULE_PARM_DESC(zfs_abd_scatter_min_size,
|
||
|
"Minimum size of scatter allocations.");
|
||
|
/* CSTYLED */
|
||
|
module_param(zfs_abd_scatter_max_order, uint, 0644);
|
||
|
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
|
||
|
"Maximum order allocation used for a scatter ABD.");
|
||
|
#endif
|