zfs-builds-mm/zfs-2.0.0/man/man5/zfs-module-parameters.5

4183 lines
102 KiB
Groff
Raw Normal View History

2020-12-02 17:25:31 +01:00
'\" te
.\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
.\" Copyright (c) 2019, 2020 by Delphix. All rights reserved.
.\" Copyright (c) 2019 Datto Inc.
.\" The contents of this file are subject to the terms of the Common Development
.\" and Distribution License (the "License"). You may not use this file except
.\" in compliance with the License. You can obtain a copy of the license at
.\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.
.\"
.\" See the License for the specific language governing permissions and
.\" limitations under the License. When distributing Covered Code, include this
.\" CDDL HEADER in each file and include the License file at
.\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this
.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
.\" own identifying information:
.\" Portions Copyright [yyyy] [name of copyright owner]
.TH ZFS-MODULE-PARAMETERS 5 "Aug 24, 2020" OpenZFS
.SH NAME
zfs\-module\-parameters \- ZFS module parameters
.SH DESCRIPTION
.sp
.LP
Description of the different parameters to the ZFS module.
.SS "Module parameters"
.sp
.LP
.sp
.ne 2
.na
\fBdbuf_cache_max_bytes\fR (ulong)
.ad
.RS 12n
Maximum size in bytes of the dbuf cache. The target size is determined by the
MIN versus \fB1/2^dbuf_cache_shift\fR (1/32) of the target ARC size. The
behavior of the dbuf cache and its associated settings can be observed via the
\fB/proc/spl/kstat/zfs/dbufstats\fR kstat.
.sp
Default value: \fBULONG_MAX\fR.
.RE
.sp
.ne 2
.na
\fBdbuf_metadata_cache_max_bytes\fR (ulong)
.ad
.RS 12n
Maximum size in bytes of the metadata dbuf cache. The target size is
determined by the MIN versus \fB1/2^dbuf_metadata_cache_shift\fR (1/64) of the
target ARC size. The behavior of the metadata dbuf cache and its associated
settings can be observed via the \fB/proc/spl/kstat/zfs/dbufstats\fR kstat.
.sp
Default value: \fBULONG_MAX\fR.
.RE
.sp
.ne 2
.na
\fBdbuf_cache_hiwater_pct\fR (uint)
.ad
.RS 12n
The percentage over \fBdbuf_cache_max_bytes\fR when dbufs must be evicted
directly.
.sp
Default value: \fB10\fR%.
.RE
.sp
.ne 2
.na
\fBdbuf_cache_lowater_pct\fR (uint)
.ad
.RS 12n
The percentage below \fBdbuf_cache_max_bytes\fR when the evict thread stops
evicting dbufs.
.sp
Default value: \fB10\fR%.
.RE
.sp
.ne 2
.na
\fBdbuf_cache_shift\fR (int)
.ad
.RS 12n
Set the size of the dbuf cache, \fBdbuf_cache_max_bytes\fR, to a log2 fraction
of the target ARC size.
.sp
Default value: \fB5\fR.
.RE
.sp
.ne 2
.na
\fBdbuf_metadata_cache_shift\fR (int)
.ad
.RS 12n
Set the size of the dbuf metadata cache, \fBdbuf_metadata_cache_max_bytes\fR,
to a log2 fraction of the target ARC size.
.sp
Default value: \fB6\fR.
.RE
.sp
.ne 2
.na
\fBdmu_object_alloc_chunk_shift\fR (int)
.ad
.RS 12n
dnode slots allocated in a single operation as a power of 2. The default value
minimizes lock contention for the bulk operation performed.
.sp
Default value: \fB7\fR (128).
.RE
.sp
.ne 2
.na
\fBdmu_prefetch_max\fR (int)
.ad
.RS 12n
Limit the amount we can prefetch with one call to this amount (in bytes).
This helps to limit the amount of memory that can be used by prefetching.
.sp
Default value: \fB134,217,728\fR (128MB).
.RE
.sp
.ne 2
.na
\fBignore_hole_birth\fR (int)
.ad
.RS 12n
This is an alias for \fBsend_holes_without_birth_time\fR.
.RE
.sp
.ne 2
.na
\fBl2arc_feed_again\fR (int)
.ad
.RS 12n
Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as
fast as possible.
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE
.sp
.ne 2
.na
\fBl2arc_feed_min_ms\fR (ulong)
.ad
.RS 12n
Min feed interval in milliseconds. Requires \fBl2arc_feed_again=1\fR and only
applicable in related situations.
.sp
Default value: \fB200\fR.
.RE
.sp
.ne 2
.na
\fBl2arc_feed_secs\fR (ulong)
.ad
.RS 12n
Seconds between L2ARC writing
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBl2arc_headroom\fR (ulong)
.ad
.RS 12n
How far through the ARC lists to search for L2ARC cacheable content, expressed
as a multiplier of \fBl2arc_write_max\fR.
ARC persistence across reboots can be achieved with persistent L2ARC by setting
this parameter to \fB0\fR allowing the full length of ARC lists to be searched
for cacheable content.
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBl2arc_headroom_boost\fR (ulong)
.ad
.RS 12n
Scales \fBl2arc_headroom\fR by this percentage when L2ARC contents are being
successfully compressed before writing. A value of \fB100\fR disables this
feature.
.sp
Default value: \fB200\fR%.
.RE
.sp
.ne 2
.na
\fBl2arc_mfuonly\fR (int)
.ad
.RS 12n
Controls whether only MFU metadata and data are cached from ARC into L2ARC.
This may be desired to avoid wasting space on L2ARC when reading/writing large
amounts of data that are not expected to be accessed more than once. The
default is \fB0\fR, meaning both MRU and MFU data and metadata are cached.
When turning off (\fB0\fR) this feature some MRU buffers will still be present
in ARC and eventually cached on L2ARC.
.sp
Use \fB0\fR for no (default) and \fB1\fR for yes.
.RE
.sp
.ne 2
.na
\fBl2arc_meta_percent\fR (int)
.ad
.RS 12n
Percent of ARC size allowed for L2ARC-only headers.
Since L2ARC buffers are not evicted on memory pressure, too large amount of
headers on system with irrationaly large L2ARC can render it slow or unusable.
This parameter limits L2ARC writes and rebuild to achieve it.
.sp
Default value: \fB33\fR%.
.RE
.sp
.ne 2
.na
\fBl2arc_trim_ahead\fR (ulong)
.ad
.RS 12n
Trims ahead of the current write size (\fBl2arc_write_max\fR) on L2ARC devices
by this percentage of write size if we have filled the device. If set to
\fB100\fR we TRIM twice the space required to accommodate upcoming writes. A
minimum of 64MB will be trimmed. It also enables TRIM of the whole L2ARC device
upon creation or addition to an existing pool or if the header of the device is
invalid upon importing a pool or onlining a cache device. A value of \fB0\fR
disables TRIM on L2ARC altogether and is the default as it can put significant
stress on the underlying storage devices. This will vary depending of how well
the specific device handles these commands.
.sp
Default value: \fB0\fR%.
.RE
.sp
.ne 2
.na
\fBl2arc_noprefetch\fR (int)
.ad
.RS 12n
Do not write buffers to L2ARC if they were prefetched but not used by
applications.
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE
.sp
.ne 2
.na
\fBl2arc_norw\fR (int)
.ad
.RS 12n
No reads during writes.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBl2arc_write_boost\fR (ulong)
.ad
.RS 12n
Cold L2ARC devices will have \fBl2arc_write_max\fR increased by this amount
while they remain cold.
.sp
Default value: \fB8,388,608\fR.
.RE
.sp
.ne 2
.na
\fBl2arc_write_max\fR (ulong)
.ad
.RS 12n
Max write bytes per interval.
.sp
Default value: \fB8,388,608\fR.
.RE
.sp
.ne 2
.na
\fBl2arc_rebuild_enabled\fR (int)
.ad
.RS 12n
Rebuild the L2ARC when importing a pool (persistent L2ARC). This can be
disabled if there are problems importing a pool or attaching an L2ARC device
(e.g. the L2ARC device is slow in reading stored log metadata, or the metadata
has become somehow fragmented/unusable).
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBl2arc_rebuild_blocks_min_l2size\fR (ulong)
.ad
.RS 12n
Min size (in bytes) of an L2ARC device required in order to write log blocks
in it. The log blocks are used upon importing the pool to rebuild
the L2ARC (persistent L2ARC). Rationale: for L2ARC devices less than 1GB, the
amount of data l2arc_evict() evicts is significant compared to the amount of
restored L2ARC data. In this case do not write log blocks in L2ARC in order not
to waste space.
.sp
Default value: \fB1,073,741,824\fR (1GB).
.RE
.sp
.ne 2
.na
\fBmetaslab_aliquot\fR (ulong)
.ad
.RS 12n
Metaslab granularity, in bytes. This is roughly similar to what would be
referred to as the "stripe size" in traditional RAID arrays. In normal
operation, ZFS will try to write this amount of data to a top-level vdev
before moving on to the next one.
.sp
Default value: \fB524,288\fR.
.RE
.sp
.ne 2
.na
\fBmetaslab_bias_enabled\fR (int)
.ad
.RS 12n
Enable metaslab group biasing based on its vdev's over- or under-utilization
relative to the pool.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBmetaslab_force_ganging\fR (ulong)
.ad
.RS 12n
Make some blocks above a certain size be gang blocks. This option is used
by the test suite to facilitate testing.
.sp
Default value: \fB16,777,217\fR.
.RE
.sp
.ne 2
.na
\fBzfs_history_output_max\fR (int)
.ad
.RS 12n
When attempting to log the output nvlist of an ioctl in the on-disk history, the
output will not be stored if it is larger than size (in bytes). This must be
less then DMU_MAX_ACCESS (64MB). This applies primarily to
zfs_ioc_channel_program().
.sp
Default value: \fB1MB\fR.
.RE
.sp
.ne 2
.na
\fBzfs_keep_log_spacemaps_at_export\fR (int)
.ad
.RS 12n
Prevent log spacemaps from being destroyed during pool exports and destroys.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_metaslab_segment_weight_enabled\fR (int)
.ad
.RS 12n
Enable/disable segment-based metaslab selection.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBzfs_metaslab_switch_threshold\fR (int)
.ad
.RS 12n
When using segment-based metaslab selection, continue allocating
from the active metaslab until \fBzfs_metaslab_switch_threshold\fR
worth of buckets have been exhausted.
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBmetaslab_debug_load\fR (int)
.ad
.RS 12n
Load all metaslabs during pool import.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBmetaslab_debug_unload\fR (int)
.ad
.RS 12n
Prevent metaslabs from being unloaded.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBmetaslab_fragmentation_factor_enabled\fR (int)
.ad
.RS 12n
Enable use of the fragmentation metric in computing metaslab weights.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBmetaslab_df_max_search\fR (int)
.ad
.RS 12n
Maximum distance to search forward from the last offset. Without this limit,
fragmented pools can see >100,000 iterations and metaslab_block_picker()
becomes the performance limiting factor on high-performance storage.
With the default setting of 16MB, we typically see less than 500 iterations,
even with very fragmented, ashift=9 pools. The maximum number of iterations
possible is: \fBmetaslab_df_max_search / (2 * (1<<ashift))\fR.
With the default setting of 16MB this is 16*1024 (with ashift=9) or 2048
(with ashift=12).
.sp
Default value: \fB16,777,216\fR (16MB)
.RE
.sp
.ne 2
.na
\fBmetaslab_df_use_largest_segment\fR (int)
.ad
.RS 12n
If we are not searching forward (due to metaslab_df_max_search,
metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable controls
what segment is used. If it is set, we will use the largest free segment.
If it is not set, we will use a segment of exactly the requested size (or
larger).
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_metaslab_max_size_cache_sec\fR (ulong)
.ad
.RS 12n
When we unload a metaslab, we cache the size of the largest free chunk. We use
that cached size to determine whether or not to load a metaslab for a given
allocation. As more frees accumulate in that metaslab while it's unloaded, the
cached max size becomes less and less accurate. After a number of seconds
controlled by this tunable, we stop considering the cached max size and start
considering only the histogram instead.
.sp
Default value: \fB3600 seconds\fR (one hour)
.RE
.sp
.ne 2
.na
\fBzfs_metaslab_mem_limit\fR (int)
.ad
.RS 12n
When we are loading a new metaslab, we check the amount of memory being used
to store metaslab range trees. If it is over a threshold, we attempt to unload
the least recently used metaslab to prevent the system from clogging all of
its memory with range trees. This tunable sets the percentage of total system
memory that is the threshold.
.sp
Default value: \fB25 percent\fR
.RE
.sp
.ne 2
.na
\fBzfs_vdev_default_ms_count\fR (int)
.ad
.RS 12n
When a vdev is added target this number of metaslabs per top-level vdev.
.sp
Default value: \fB200\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_default_ms_shift\fR (int)
.ad
.RS 12n
Default limit for metaslab size.
.sp
Default value: \fB29\fR [meaning (1 << 29) = 512MB].
.RE
.sp
.ne 2
.na
\fBzfs_vdev_max_auto_ashift\fR (ulong)
.ad
.RS 12n
Maximum ashift used when optimizing for logical -> physical sector size on new
top-level vdevs.
.sp
Default value: \fBASHIFT_MAX\fR (16).
.RE
.sp
.ne 2
.na
\fBzfs_vdev_min_auto_ashift\fR (ulong)
.ad
.RS 12n
Minimum ashift used when creating new top-level vdevs.
.sp
Default value: \fBASHIFT_MIN\fR (9).
.RE
.sp
.ne 2
.na
\fBzfs_vdev_min_ms_count\fR (int)
.ad
.RS 12n
Minimum number of metaslabs to create in a top-level vdev.
.sp
Default value: \fB16\fR.
.RE
.sp
.ne 2
.na
\fBvdev_validate_skip\fR (int)
.ad
.RS 12n
Skip label validation steps during pool import. Changing is not recommended
unless you know what you are doing and are recovering a damaged label.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_ms_count_limit\fR (int)
.ad
.RS 12n
Practical upper limit of total metaslabs per top-level vdev.
.sp
Default value: \fB131,072\fR.
.RE
.sp
.ne 2
.na
\fBmetaslab_preload_enabled\fR (int)
.ad
.RS 12n
Enable metaslab group preloading.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBmetaslab_lba_weighting_enabled\fR (int)
.ad
.RS 12n
Give more weight to metaslabs with lower LBAs, assuming they have
greater bandwidth as is typically the case on a modern constant
angular velocity disk drive.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBmetaslab_unload_delay\fR (int)
.ad
.RS 12n
After a metaslab is used, we keep it loaded for this many txgs, to attempt to
reduce unnecessary reloading. Note that both this many txgs and
\fBmetaslab_unload_delay_ms\fR milliseconds must pass before unloading will
occur.
.sp
Default value: \fB32\fR.
.RE
.sp
.ne 2
.na
\fBmetaslab_unload_delay_ms\fR (int)
.ad
.RS 12n
After a metaslab is used, we keep it loaded for this many milliseconds, to
attempt to reduce unnecessary reloading. Note that both this many
milliseconds and \fBmetaslab_unload_delay\fR txgs must pass before unloading
will occur.
.sp
Default value: \fB600000\fR (ten minutes).
.RE
.sp
.ne 2
.na
\fBsend_holes_without_birth_time\fR (int)
.ad
.RS 12n
When set, the hole_birth optimization will not be used, and all holes will
always be sent on zfs send. This is useful if you suspect your datasets are
affected by a bug in hole_birth.
.sp
Use \fB1\fR for on (default) and \fB0\fR for off.
.RE
.sp
.ne 2
.na
\fBspa_config_path\fR (charp)
.ad
.RS 12n
SPA config file
.sp
Default value: \fB/etc/zfs/zpool.cache\fR.
.RE
.sp
.ne 2
.na
\fBspa_asize_inflation\fR (int)
.ad
.RS 12n
Multiplication factor used to estimate actual disk consumption from the
size of data being written. The default value is a worst case estimate,
but lower values may be valid for a given pool depending on its
configuration. Pool administrators who understand the factors involved
may wish to specify a more realistic inflation factor, particularly if
they operate close to quota or capacity limits.
.sp
Default value: \fB24\fR.
.RE
.sp
.ne 2
.na
\fBspa_load_print_vdev_tree\fR (int)
.ad
.RS 12n
Whether to print the vdev tree in the debugging message buffer during pool import.
Use 0 to disable and 1 to enable.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBspa_load_verify_data\fR (int)
.ad
.RS 12n
Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR)
import. Use 0 to disable and 1 to enable.
An extreme rewind import normally performs a full traversal of all
blocks in the pool for verification. If this parameter is set to 0,
the traversal skips non-metadata blocks. It can be toggled once the
import has started to stop or start the traversal of non-metadata blocks.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBspa_load_verify_metadata\fR (int)
.ad
.RS 12n
Whether to traverse blocks during an "extreme rewind" (\fB-X\fR)
pool import. Use 0 to disable and 1 to enable.
An extreme rewind import normally performs a full traversal of all
blocks in the pool for verification. If this parameter is set to 0,
the traversal is not performed. It can be toggled once the import has
started to stop or start the traversal.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBspa_load_verify_shift\fR (int)
.ad
.RS 12n
Sets the maximum number of bytes to consume during pool import to the log2
fraction of the target ARC size.
.sp
Default value: \fB4\fR.
.RE
.sp
.ne 2
.na
\fBspa_slop_shift\fR (int)
.ad
.RS 12n
Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space
in the pool to be consumed. This ensures that we don't run the pool
completely out of space, due to unaccounted changes (e.g. to the MOS).
It also limits the worst-case time to allocate space. If we have
less than this amount of free space, most ZPL operations (e.g. write,
create) will return ENOSPC.
.sp
Default value: \fB5\fR.
.RE
.sp
.ne 2
.na
\fBvdev_removal_max_span\fR (int)
.ad
.RS 12n
During top-level vdev removal, chunks of data are copied from the vdev
which may include free space in order to trade bandwidth for IOPS.
This parameter determines the maximum span of free space (in bytes)
which will be included as "unnecessary" data in a chunk of copied data.
The default value here was chosen to align with
\fBzfs_vdev_read_gap_limit\fR, which is a similar concept when doing
regular reads (but there's no reason it has to be the same).
.sp
Default value: \fB32,768\fR.
.RE
.sp
.ne 2
.na
\fBvdev_file_logical_ashift\fR (ulong)
.ad
.RS 12n
Logical ashift for file-based devices.
.sp
Default value: \fB9\fR.
.RE
.sp
.ne 2
.na
\fBvdev_file_physical_ashift\fR (ulong)
.ad
.RS 12n
Physical ashift for file-based devices.
.sp
Default value: \fB9\fR.
.RE
.sp
.ne 2
.na
\fBzap_iterate_prefetch\fR (int)
.ad
.RS 12n
If this is set, when we start iterating over a ZAP object, zfs will prefetch
the entire object (all leaf blocks). However, this is limited by
\fBdmu_prefetch_max\fR.
.sp
Use \fB1\fR for on (default) and \fB0\fR for off.
.RE
.sp
.ne 2
.na
\fBzfetch_array_rd_sz\fR (ulong)
.ad
.RS 12n
If prefetching is enabled, disable prefetching for reads larger than this size.
.sp
Default value: \fB1,048,576\fR.
.RE
.sp
.ne 2
.na
\fBzfetch_max_distance\fR (uint)
.ad
.RS 12n
Max bytes to prefetch per stream.
.sp
Default value: \fB8,388,608\fR (8MB).
.RE
.sp
.ne 2
.na
\fBzfetch_max_idistance\fR (uint)
.ad
.RS 12n
Max bytes to prefetch indirects for per stream.
.sp
Default vaule: \fB67,108,864\fR (64MB).
.RE
.sp
.ne 2
.na
\fBzfetch_max_streams\fR (uint)
.ad
.RS 12n
Max number of streams per zfetch (prefetch streams per file).
.sp
Default value: \fB8\fR.
.RE
.sp
.ne 2
.na
\fBzfetch_min_sec_reap\fR (uint)
.ad
.RS 12n
Min time before an active prefetch stream can be reclaimed
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_abd_scatter_enabled\fR (int)
.ad
.RS 12n
Enables ARC from using scatter/gather lists and forces all allocations to be
linear in kernel memory. Disabling can improve performance in some code paths
at the expense of fragmented kernel memory.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_abd_scatter_max_order\fR (iunt)
.ad
.RS 12n
Maximum number of consecutive memory pages allocated in a single block for
scatter/gather lists. Default value is specified by the kernel itself.
.sp
Default value: \fB10\fR at the time of this writing.
.RE
.sp
.ne 2
.na
\fBzfs_abd_scatter_min_size\fR (uint)
.ad
.RS 12n
This is the minimum allocation size that will use scatter (page-based)
ABD's. Smaller allocations will use linear ABD's.
.sp
Default value: \fB1536\fR (512B and 1KB allocations will be linear).
.RE
.sp
.ne 2
.na
\fBzfs_arc_dnode_limit\fR (ulong)
.ad
.RS 12n
When the number of bytes consumed by dnodes in the ARC exceeds this number of
bytes, try to unpin some of it in response to demand for non-metadata. This
value acts as a ceiling to the amount of dnode metadata, and defaults to 0 which
indicates that a percent which is based on \fBzfs_arc_dnode_limit_percent\fR of
the ARC meta buffers that may be used for dnodes.
See also \fBzfs_arc_meta_prune\fR which serves a similar purpose but is used
when the amount of metadata in the ARC exceeds \fBzfs_arc_meta_limit\fR rather
than in response to overall demand for non-metadata.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_dnode_limit_percent\fR (ulong)
.ad
.RS 12n
Percentage that can be consumed by dnodes of ARC meta buffers.
.sp
See also \fBzfs_arc_dnode_limit\fR which serves a similar purpose but has a
higher priority if set to nonzero value.
.sp
Default value: \fB10\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_arc_dnode_reduce_percent\fR (ulong)
.ad
.RS 12n
Percentage of ARC dnodes to try to scan in response to demand for non-metadata
when the number of bytes consumed by dnodes exceeds \fBzfs_arc_dnode_limit\fR.
.sp
Default value: \fB10\fR% of the number of dnodes in the ARC.
.RE
.sp
.ne 2
.na
\fBzfs_arc_average_blocksize\fR (int)
.ad
.RS 12n
The ARC's buffer hash table is sized based on the assumption of an average
block size of \fBzfs_arc_average_blocksize\fR (default 8K). This works out
to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers.
For configurations with a known larger average block size this value can be
increased to reduce the memory footprint.
.sp
Default value: \fB8192\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_eviction_pct\fR (int)
.ad
.RS 12n
When \fBarc_is_overflowing()\fR, \fBarc_get_data_impl()\fR waits for this
percent of the requested amount of data to be evicted. For example, by
default for every 2KB that's evicted, 1KB of it may be "reused" by a new
allocation. Since this is above 100%, it ensures that progress is made
towards getting \fBarc_size\fR under \fBarc_c\fR. Since this is finite, it
ensures that allocations can still happen, even during the potentially long
time that \fBarc_size\fR is more than \fBarc_c\fR.
.sp
Default value: \fB200\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_evict_batch_limit\fR (int)
.ad
.RS 12n
Number ARC headers to evict per sub-list before proceeding to another sub-list.
This batch-style operation prevents entire sub-lists from being evicted at once
but comes at a cost of additional unlocking and locking.
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_grow_retry\fR (int)
.ad
.RS 12n
If set to a non zero value, it will replace the arc_grow_retry value with this value.
The arc_grow_retry value (default 5) is the number of seconds the ARC will wait before
trying to resume growth after a memory pressure event.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_lotsfree_percent\fR (int)
.ad
.RS 12n
Throttle I/O when free system memory drops below this percentage of total
system memory. Setting this value to 0 will disable the throttle.
.sp
Default value: \fB10\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_arc_max\fR (ulong)
.ad
.RS 12n
Max size of ARC in bytes. If set to 0 then the max size of ARC is determined
by the amount of system memory installed. For Linux, 1/2 of system memory will
be used as the limit. For FreeBSD, the larger of all system memory - 1GB or
5/8 of system memory will be used as the limit. This value must be at least
67108864 (64 megabytes).
.sp
This value can be changed dynamically with some caveats. It cannot be set back
to 0 while running and reducing it below the current ARC size will not cause
the ARC to shrink without memory pressure to induce shrinking.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_meta_adjust_restarts\fR (ulong)
.ad
.RS 12n
The number of restart passes to make while scanning the ARC attempting
the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR.
This value should not need to be tuned but is available to facilitate
performance analysis.
.sp
Default value: \fB4096\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_meta_limit\fR (ulong)
.ad
.RS 12n
The maximum allowed size in bytes that meta data buffers are allowed to
consume in the ARC. When this limit is reached meta data buffers will
be reclaimed even if the overall arc_c_max has not been reached. This
value defaults to 0 which indicates that a percent which is based on
\fBzfs_arc_meta_limit_percent\fR of the ARC may be used for meta data.
.sp
This value my be changed dynamically except that it cannot be set back to 0
for a specific percent of the ARC; it must be set to an explicit value.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_meta_limit_percent\fR (ulong)
.ad
.RS 12n
Percentage of ARC buffers that can be used for meta data.
See also \fBzfs_arc_meta_limit\fR which serves a similar purpose but has a
higher priority if set to nonzero value.
.sp
Default value: \fB75\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_arc_meta_min\fR (ulong)
.ad
.RS 12n
The minimum allowed size in bytes that meta data buffers may consume in
the ARC. This value defaults to 0 which disables a floor on the amount
of the ARC devoted meta data.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_meta_prune\fR (int)
.ad
.RS 12n
The number of dentries and inodes to be scanned looking for entries
which can be dropped. This may be required when the ARC reaches the
\fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers
in the ARC. Increasing this value will cause to dentry and inode caches
to be pruned more aggressively. Setting this value to 0 will disable
pruning the inode and dentry caches.
.sp
Default value: \fB10,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_meta_strategy\fR (int)
.ad
.RS 12n
Define the strategy for ARC meta data buffer eviction (meta reclaim strategy).
A value of 0 (META_ONLY) will evict only the ARC meta data buffers.
A value of 1 (BALANCED) indicates that additional data buffers may be evicted if
that is required to in order to evict the required number of meta data buffers.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_min\fR (ulong)
.ad
.RS 12n
Min size of ARC in bytes. If set to 0 then arc_c_min will default to
consuming the larger of 32M or 1/32 of total system memory.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_min_prefetch_ms\fR (int)
.ad
.RS 12n
Minimum time prefetched blocks are locked in the ARC, specified in ms.
A value of \fB0\fR will default to 1000 ms.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_min_prescient_prefetch_ms\fR (int)
.ad
.RS 12n
Minimum time "prescient prefetched" blocks are locked in the ARC, specified
in ms. These blocks are meant to be prefetched fairly aggressively ahead of
the code that may use them. A value of \fB0\fR will default to 6000 ms.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_max_missing_tvds\fR (int)
.ad
.RS 12n
Number of missing top-level vdevs which will be allowed during
pool import (only in read-only mode).
.sp
Default value: \fB0\fR
.RE
.sp
.ne 2
.na
\fBzfs_max_nvlist_src_size\fR (ulong)
.ad
.RS 12n
Maximum size in bytes allowed to be passed as zc_nvlist_src_size for ioctls on
/dev/zfs. This prevents a user from causing the kernel to allocate an excessive
amount of memory. When the limit is exceeded, the ioctl fails with EINVAL and a
description of the error is sent to the zfs-dbgmsg log. This parameter should
not need to be touched under normal circumstances. On FreeBSD, the default is
based on the system limit on user wired memory. On Linux, the default is
\fBKMALLOC_MAX_SIZE\fR .
.sp
Default value: \fB0\fR (kernel decides)
.RE
.sp
.ne 2
.na
\fBzfs_multilist_num_sublists\fR (int)
.ad
.RS 12n
To allow more fine-grained locking, each ARC state contains a series
of lists for both data and meta data objects. Locking is performed at
the level of these "sub-lists". This parameters controls the number of
sub-lists per ARC state, and also applies to other uses of the
multilist data structure.
.sp
Default value: \fB4\fR or the number of online CPUs, whichever is greater
.RE
.sp
.ne 2
.na
\fBzfs_arc_overflow_shift\fR (int)
.ad
.RS 12n
The ARC size is considered to be overflowing if it exceeds the current
ARC target size (arc_c) by a threshold determined by this parameter.
The threshold is calculated as a fraction of arc_c using the formula
"arc_c >> \fBzfs_arc_overflow_shift\fR".
The default value of 8 causes the ARC to be considered to be overflowing
if it exceeds the target size by 1/256th (0.3%) of the target size.
When the ARC is overflowing, new buffer allocations are stalled until
the reclaim thread catches up and the overflow condition no longer exists.
.sp
Default value: \fB8\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_p_min_shift\fR (int)
.ad
.RS 12n
If set to a non zero value, this will update arc_p_min_shift (default 4)
with the new value.
arc_p_min_shift is used to shift of arc_c for calculating both min and max
max arc_p
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_p_dampener_disable\fR (int)
.ad
.RS 12n
Disable arc_p adapt dampener
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE
.sp
.ne 2
.na
\fBzfs_arc_shrink_shift\fR (int)
.ad
.RS 12n
If set to a non zero value, this will update arc_shrink_shift (default 7)
with the new value.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_pc_percent\fR (uint)
.ad
.RS 12n
Percent of pagecache to reclaim arc to
This tunable allows ZFS arc to play more nicely with the kernel's LRU
pagecache. It can guarantee that the ARC size won't collapse under scanning
pressure on the pagecache, yet still allows arc to be reclaimed down to
zfs_arc_min if necessary. This value is specified as percent of pagecache
size (as measured by NR_FILE_PAGES) where that percent may exceed 100. This
only operates during memory pressure/reclaim.
.sp
Default value: \fB0\fR% (disabled).
.RE
.sp
.ne 2
.na
\fBzfs_arc_shrinker_limit\fR (int)
.ad
.RS 12n
This is a limit on how many pages the ARC shrinker makes available for
eviction in response to one page allocation attempt. Note that in
practice, the kernel's shrinker can ask us to evict up to about 4x this
for one allocation attempt.
.sp
The default limit of 10,000 (in practice, 160MB per allocation attempt with
4K pages) limits the amount of time spent attempting to reclaim ARC memory to
less than 100ms per allocation attempt, even with a small average compressed
block size of ~8KB.
.sp
The parameter can be set to 0 (zero) to disable the limit.
.sp
This parameter only applies on Linux.
.sp
Default value: \fB10,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_arc_sys_free\fR (ulong)
.ad
.RS 12n
The target number of bytes the ARC should leave as free memory on the system.
Defaults to the larger of 1/64 of physical memory or 512K. Setting this
option to a non-zero value will override the default.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_autoimport_disable\fR (int)
.ad
.RS 12n
Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR).
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBzfs_checksum_events_per_second\fR (uint)
.ad
.RS 12n
Rate limit checksum events to this many per second. Note that this should
not be set below the zed thresholds (currently 10 checksums over 10 sec)
or else zed may not trigger any action.
.sp
Default value: 20
.RE
.sp
.ne 2
.na
\fBzfs_commit_timeout_pct\fR (int)
.ad
.RS 12n
This controls the amount of time that a ZIL block (lwb) will remain "open"
when it isn't "full", and it has a thread waiting for it to be committed to
stable storage. The timeout is scaled based on a percentage of the last lwb
latency to avoid significantly impacting the latency of each individual
transaction record (itx).
.sp
Default value: \fB5\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_condense_indirect_commit_entry_delay_ms\fR (int)
.ad
.RS 12n
Vdev indirection layer (used for device removal) sleeps for this many
milliseconds during mapping generation. Intended for use with the test suite
to throttle vdev removal speed.
.sp
Default value: \fB0\fR (no throttle).
.RE
.sp
.ne 2
.na
\fBzfs_condense_indirect_vdevs_enable\fR (int)
.ad
.RS 12n
Enable condensing indirect vdev mappings. When set to a non-zero value,
attempt to condense indirect vdev mappings if the mapping uses more than
\fBzfs_condense_min_mapping_bytes\fR bytes of memory and if the obsolete
space map object uses more than \fBzfs_condense_max_obsolete_bytes\fR
bytes on-disk. The condensing process is an attempt to save memory by
removing obsolete mappings.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_condense_max_obsolete_bytes\fR (ulong)
.ad
.RS 12n
Only attempt to condense indirect vdev mappings if the on-disk size
of the obsolete space map object is greater than this number of bytes
(see \fBfBzfs_condense_indirect_vdevs_enable\fR).
.sp
Default value: \fB1,073,741,824\fR.
.RE
.sp
.ne 2
.na
\fBzfs_condense_min_mapping_bytes\fR (ulong)
.ad
.RS 12n
Minimum size vdev mapping to attempt to condense (see
\fBzfs_condense_indirect_vdevs_enable\fR).
.sp
Default value: \fB131,072\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dbgmsg_enable\fR (int)
.ad
.RS 12n
Internally ZFS keeps a small log to facilitate debugging. By default the log
is disabled, to enable it set this option to 1. The contents of the log can
be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file. Writing 0 to
this proc file clears the log.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dbgmsg_maxsize\fR (int)
.ad
.RS 12n
The maximum size in bytes of the internal ZFS debug log.
.sp
Default value: \fB4M\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dbuf_state_index\fR (int)
.ad
.RS 12n
This feature is currently unused. It is normally used for controlling what
reporting is available under /proc/spl/kstat/zfs.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_deadman_enabled\fR (int)
.ad
.RS 12n
When a pool sync operation takes longer than \fBzfs_deadman_synctime_ms\fR
milliseconds, or when an individual I/O takes longer than
\fBzfs_deadman_ziotime_ms\fR milliseconds, then the operation is considered to
be "hung". If \fBzfs_deadman_enabled\fR is set then the deadman behavior is
invoked as described by the \fBzfs_deadman_failmode\fR module option.
By default the deadman is enabled and configured to \fBwait\fR which results
in "hung" I/Os only being logged. The deadman is automatically disabled
when a pool gets suspended.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_deadman_failmode\fR (charp)
.ad
.RS 12n
Controls the failure behavior when the deadman detects a "hung" I/O. Valid
values are \fBwait\fR, \fBcontinue\fR, and \fBpanic\fR.
.sp
\fBwait\fR - Wait for a "hung" I/O to complete. For each "hung" I/O a
"deadman" event will be posted describing that I/O.
.sp
\fBcontinue\fR - Attempt to recover from a "hung" I/O by re-dispatching it
to the I/O pipeline if possible.
.sp
\fBpanic\fR - Panic the system. This can be used to facilitate an automatic
fail-over to a properly configured fail-over partner.
.sp
Default value: \fBwait\fR.
.RE
.sp
.ne 2
.na
\fBzfs_deadman_checktime_ms\fR (int)
.ad
.RS 12n
Check time in milliseconds. This defines the frequency at which we check
for hung I/O and potentially invoke the \fBzfs_deadman_failmode\fR behavior.
.sp
Default value: \fB60,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_deadman_synctime_ms\fR (ulong)
.ad
.RS 12n
Interval in milliseconds after which the deadman is triggered and also
the interval after which a pool sync operation is considered to be "hung".
Once this limit is exceeded the deadman will be invoked every
\fBzfs_deadman_checktime_ms\fR milliseconds until the pool sync completes.
.sp
Default value: \fB600,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_deadman_ziotime_ms\fR (ulong)
.ad
.RS 12n
Interval in milliseconds after which the deadman is triggered and an
individual I/O operation is considered to be "hung". As long as the I/O
remains "hung" the deadman will be invoked every \fBzfs_deadman_checktime_ms\fR
milliseconds until the I/O completes.
.sp
Default value: \fB300,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dedup_prefetch\fR (int)
.ad
.RS 12n
Enable prefetching dedup-ed blks
.sp
Use \fB1\fR for yes and \fB0\fR to disable (default).
.RE
.sp
.ne 2
.na
\fBzfs_delay_min_dirty_percent\fR (int)
.ad
.RS 12n
Start to delay each transaction once there is this amount of dirty data,
expressed as a percentage of \fBzfs_dirty_data_max\fR.
This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
See the section "ZFS TRANSACTION DELAY".
.sp
Default value: \fB60\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_delay_scale\fR (int)
.ad
.RS 12n
This controls how quickly the transaction delay approaches infinity.
Larger values cause longer delays for a given amount of dirty data.
.sp
For the smoothest delay, this value should be about 1 billion divided
by the maximum number of operations per second. This will smoothly
handle between 10x and 1/10th this number.
.sp
See the section "ZFS TRANSACTION DELAY".
.sp
Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
.sp
Default value: \fB500,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_disable_ivset_guid_check\fR (int)
.ad
.RS 12n
Disables requirement for IVset guids to be present and match when doing a raw
receive of encrypted datasets. Intended for users whose pools were created with
OpenZFS pre-release versions and now have compatibility issues.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_key_max_salt_uses\fR (ulong)
.ad
.RS 12n
Maximum number of uses of a single salt value before generating a new one for
encrypted datasets. The default value is also the maximum that will be
accepted.
.sp
Default value: \fB400,000,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_object_mutex_size\fR (uint)
.ad
.RS 12n
Size of the znode hashtable used for holds.
Due to the need to hold locks on objects that may not exist yet, kernel mutexes
are not created per-object and instead a hashtable is used where collisions
will result in objects waiting when there is not actually contention on the
same object.
.sp
Default value: \fB64\fR.
.RE
.sp
.ne 2
.na
\fBzfs_slow_io_events_per_second\fR (int)
.ad
.RS 12n
Rate limit delay zevents (which report slow I/Os) to this many per second.
.sp
Default value: 20
.RE
.sp
.ne 2
.na
\fBzfs_unflushed_max_mem_amt\fR (ulong)
.ad
.RS 12n
Upper-bound limit for unflushed metadata changes to be held by the
log spacemap in memory (in bytes).
.sp
Default value: \fB1,073,741,824\fR (1GB).
.RE
.sp
.ne 2
.na
\fBzfs_unflushed_max_mem_ppm\fR (ulong)
.ad
.RS 12n
Percentage of the overall system memory that ZFS allows to be used
for unflushed metadata changes by the log spacemap.
(value is calculated over 1000000 for finer granularity).
.sp
Default value: \fB1000\fR (which is divided by 1000000, resulting in
the limit to be \fB0.1\fR% of memory)
.RE
.sp
.ne 2
.na
\fBzfs_unflushed_log_block_max\fR (ulong)
.ad
.RS 12n
Describes the maximum number of log spacemap blocks allowed for each pool.
The default value of 262144 means that the space in all the log spacemaps
can add up to no more than 262144 blocks (which means 32GB of logical
space before compression and ditto blocks, assuming that blocksize is
128k).
.sp
This tunable is important because it involves a trade-off between import
time after an unclean export and the frequency of flushing metaslabs.
The higher this number is, the more log blocks we allow when the pool is
active which means that we flush metaslabs less often and thus decrease
the number of I/Os for spacemap updates per TXG.
At the same time though, that means that in the event of an unclean export,
there will be more log spacemap blocks for us to read, inducing overhead
in the import time of the pool.
The lower the number, the amount of flushing increases destroying log
blocks quicker as they become obsolete faster, which leaves less blocks
to be read during import time after a crash.
.sp
Each log spacemap block existing during pool import leads to approximately
one extra logical I/O issued.
This is the reason why this tunable is exposed in terms of blocks rather
than space used.
.sp
Default value: \fB262144\fR (256K).
.RE
.sp
.ne 2
.na
\fBzfs_unflushed_log_block_min\fR (ulong)
.ad
.RS 12n
If the number of metaslabs is small and our incoming rate is high, we
could get into a situation that we are flushing all our metaslabs every
TXG.
Thus we always allow at least this many log blocks.
.sp
Default value: \fB1000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_unflushed_log_block_pct\fR (ulong)
.ad
.RS 12n
Tunable used to determine the number of blocks that can be used for
the spacemap log, expressed as a percentage of the total number of
metaslabs in the pool.
.sp
Default value: \fB400\fR (read as \fB400\fR% - meaning that the number
of log spacemap blocks are capped at 4 times the number of
metaslabs in the pool).
.RE
.sp
.ne 2
.na
\fBzfs_unlink_suspend_progress\fR (uint)
.ad
.RS 12n
When enabled, files will not be asynchronously removed from the list of pending
unlinks and the space they consume will be leaked. Once this option has been
disabled and the dataset is remounted, the pending unlinks will be processed
and the freed space returned to the pool.
This option is used by the test suite to facilitate testing.
.sp
Uses \fB0\fR (default) to allow progress and \fB1\fR to pause progress.
.RE
.sp
.ne 2
.na
\fBzfs_delete_blocks\fR (ulong)
.ad
.RS 12n
This is the used to define a large file for the purposes of delete. Files
containing more than \fBzfs_delete_blocks\fR will be deleted asynchronously
while smaller files are deleted synchronously. Decreasing this value will
reduce the time spent in an unlink(2) system call at the expense of a longer
delay before the freed space is available.
.sp
Default value: \fB20,480\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max\fR (int)
.ad
.RS 12n
Determines the dirty space limit in bytes. Once this limit is exceeded, new
writes are halted until space frees up. This parameter takes precedence
over \fBzfs_dirty_data_max_percent\fR.
See the section "ZFS TRANSACTION DELAY".
.sp
Default value: \fB10\fR% of physical RAM, capped at \fBzfs_dirty_data_max_max\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max_max\fR (int)
.ad
.RS 12n
Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
This limit is only enforced at module load time, and will be ignored if
\fBzfs_dirty_data_max\fR is later changed. This parameter takes
precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
"ZFS TRANSACTION DELAY".
.sp
Default value: \fB25\fR% of physical RAM.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max_max_percent\fR (int)
.ad
.RS 12n
Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
percentage of physical RAM. This limit is only enforced at module load
time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
one. See the section "ZFS TRANSACTION DELAY".
.sp
Default value: \fB25\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max_percent\fR (int)
.ad
.RS 12n
Determines the dirty space limit, expressed as a percentage of all
memory. Once this limit is exceeded, new writes are halted until space frees
up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this
one. See the section "ZFS TRANSACTION DELAY".
.sp
Default value: \fB10\fR%, subject to \fBzfs_dirty_data_max_max\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_sync_percent\fR (int)
.ad
.RS 12n
Start syncing out a transaction group if there's at least this much dirty data
as a percentage of \fBzfs_dirty_data_max\fR. This should be less than
\fBzfs_vdev_async_write_active_min_dirty_percent\fR.
.sp
Default value: \fB20\fR% of \fBzfs_dirty_data_max\fR.
.RE
.sp
.ne 2
.na
\fBzfs_fallocate_reserve_percent\fR (uint)
.ad
.RS 12n
Since ZFS is a copy-on-write filesystem with snapshots, blocks cannot be
preallocated for a file in order to guarantee that later writes will not
run out of space. Instead, fallocate() space preallocation only checks
that sufficient space is currently available in the pool or the user's
project quota allocation, and then creates a sparse file of the requested
size. The requested space is multiplied by \fBzfs_fallocate_reserve_percent\fR
to allow additional space for indirect blocks and other internal metadata.
Setting this value to 0 disables support for fallocate(2) and returns
EOPNOTSUPP for fallocate() space preallocation again.
.sp
Default value: \fB110\fR%
.RE
.sp
.ne 2
.na
\fBzfs_fletcher_4_impl\fR (string)
.ad
.RS 12n
Select a fletcher 4 implementation.
.sp
Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR,
\fBavx2\fR, \fBavx512f\fR, \fBavx512bw\fR, and \fBaarch64_neon\fR.
All of the selectors except \fBfastest\fR and \fBscalar\fR require instruction
set extensions to be available and will only appear if ZFS detects that they are
present at runtime. If multiple implementations of fletcher 4 are available,
the \fBfastest\fR will be chosen using a micro benchmark. Selecting \fBscalar\fR
results in the original, CPU based calculation, being used. Selecting any option
other than \fBfastest\fR and \fBscalar\fR results in vector instructions from
the respective CPU instruction set being used.
.sp
Default value: \fBfastest\fR.
.RE
.sp
.ne 2
.na
\fBzfs_free_bpobj_enabled\fR (int)
.ad
.RS 12n
Enable/disable the processing of the free_bpobj object.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_async_block_max_blocks\fR (ulong)
.ad
.RS 12n
Maximum number of blocks freed in a single txg.
.sp
Default value: \fBULONG_MAX\fR (unlimited).
.RE
.sp
.ne 2
.na
\fBzfs_max_async_dedup_frees\fR (ulong)
.ad
.RS 12n
Maximum number of dedup blocks freed in a single txg.
.sp
Default value: \fB100,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_override_estimate_recordsize\fR (ulong)
.ad
.RS 12n
Record size calculation override for zfs send estimates.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_read_max_active\fR (int)
.ad
.RS 12n
Maximum asynchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB3\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_read_min_active\fR (int)
.ad
.RS 12n
Minimum asynchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
.ad
.RS 12n
When the pool has more than
\fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
\fBzfs_vdev_async_write_max_active\fR to limit active async writes. If
the dirty data is between min and max, the active I/O limit is linearly
interpolated. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB60\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
.ad
.RS 12n
When the pool has less than
\fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
\fBzfs_vdev_async_write_min_active\fR to limit active async writes. If
the dirty data is between min and max, the active I/O limit is linearly
interpolated. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB30\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_max_active\fR (int)
.ad
.RS 12n
Maximum asynchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_min_active\fR (int)
.ad
.RS 12n
Minimum asynchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Lower values are associated with better latency on rotational media but poorer
resilver performance. The default value of 2 was chosen as a compromise. A
value of 3 has been shown to improve resilver performance further at a cost of
further increasing latency.
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_initializing_max_active\fR (int)
.ad
.RS 12n
Maximum initializing I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_initializing_min_active\fR (int)
.ad
.RS 12n
Minimum initializing I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_max_active\fR (int)
.ad
.RS 12n
The maximum number of I/Os active to each device. Ideally, this will be >=
the sum of each queue's max_active. It must be at least the sum of each
queue's min_active. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_rebuild_max_active\fR (int)
.ad
.RS 12n
Maximum sequential resilver I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB3\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_rebuild_min_active\fR (int)
.ad
.RS 12n
Minimum sequential resilver I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_removal_max_active\fR (int)
.ad
.RS 12n
Maximum removal I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_removal_min_active\fR (int)
.ad
.RS 12n
Minimum removal I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_scrub_max_active\fR (int)
.ad
.RS 12n
Maximum scrub I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_scrub_min_active\fR (int)
.ad
.RS 12n
Minimum scrub I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_read_max_active\fR (int)
.ad
.RS 12n
Maximum synchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_read_min_active\fR (int)
.ad
.RS 12n
Minimum synchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_write_max_active\fR (int)
.ad
.RS 12n
Maximum synchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_write_min_active\fR (int)
.ad
.RS 12n
Minimum synchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_trim_max_active\fR (int)
.ad
.RS 12n
Maximum trim/discard I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_trim_min_active\fR (int)
.ad
.RS 12n
Minimum trim/discard I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_queue_depth_pct\fR (int)
.ad
.RS 12n
Maximum number of queued allocations per top-level vdev expressed as
a percentage of \fBzfs_vdev_async_write_max_active\fR which allows the
system to detect devices that are more capable of handling allocations
and to allocate more blocks to those devices. It allows for dynamic
allocation distribution when devices are imbalanced as fuller devices
will tend to be slower than empty devices.
See also \fBzio_dva_throttle_enabled\fR.
.sp
Default value: \fB1000\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_expire_snapshot\fR (int)
.ad
.RS 12n
Seconds to expire .zfs/snapshot
.sp
Default value: \fB300\fR.
.RE
.sp
.ne 2
.na
\fBzfs_admin_snapshot\fR (int)
.ad
.RS 12n
Allow the creation, removal, or renaming of entries in the .zfs/snapshot
directory to cause the creation, destruction, or renaming of snapshots.
When enabled this functionality works both locally and over NFS exports
which have the 'no_root_squash' option set. This functionality is disabled
by default.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_flags\fR (int)
.ad
.RS 12n
Set additional debugging flags. The following flags may be bitwise-or'd
together.
.sp
.TS
box;
rB lB
lB lB
r l.
Value Symbolic Name
Description
_
1 ZFS_DEBUG_DPRINTF
Enable dprintf entries in the debug log.
_
2 ZFS_DEBUG_DBUF_VERIFY *
Enable extra dbuf verifications.
_
4 ZFS_DEBUG_DNODE_VERIFY *
Enable extra dnode verifications.
_
8 ZFS_DEBUG_SNAPNAMES
Enable snapshot name verification.
_
16 ZFS_DEBUG_MODIFY
Check for illegally modified ARC buffers.
_
64 ZFS_DEBUG_ZIO_FREE
Enable verification of block frees.
_
128 ZFS_DEBUG_HISTOGRAM_VERIFY
Enable extra spacemap histogram verifications.
_
256 ZFS_DEBUG_METASLAB_VERIFY
Verify space accounting on disk matches in-core range_trees.
_
512 ZFS_DEBUG_SET_ERROR
Enable SET_ERROR and dprintf entries in the debug log.
_
1024 ZFS_DEBUG_INDIRECT_REMAP
Verify split blocks created by device removal.
_
2048 ZFS_DEBUG_TRIM
Verify TRIM ranges are always within the allocatable range tree.
_
4096 ZFS_DEBUG_LOG_SPACEMAP
Verify that the log summary is consistent with the spacemap log
and enable zfs_dbgmsgs for metaslab loading and flushing.
.TE
.sp
* Requires debug build.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_free_leak_on_eio\fR (int)
.ad
.RS 12n
If destroy encounters an EIO while reading metadata (e.g. indirect
blocks), space referenced by the missing metadata can not be freed.
Normally this causes the background destroy to become "stalled", as
it is unable to make forward progress. While in this stalled state,
all remaining space to free from the error-encountering filesystem is
"temporarily leaked". Set this flag to cause it to ignore the EIO,
permanently leak the space from indirect blocks that can not be read,
and continue to free everything else that it can.
The default, "stalling" behavior is useful if the storage partially
fails (i.e. some but not all i/os fail), and then later recovers. In
this case, we will be able to continue pool operations while it is
partially failed, and when it recovers, we can continue to free the
space, with no leaks. However, note that this case is actually
fairly rare.
Typically pools either (a) fail completely (but perhaps temporarily,
e.g. a top-level vdev going offline), or (b) have localized,
permanent errors (e.g. disk returns the wrong data due to bit flip or
firmware bug). In case (a), this setting does not matter because the
pool will be suspended and the sync thread will not be able to make
forward progress regardless. In case (b), because the error is
permanent, the best we can do is leak the minimum amount of space,
which is what setting this flag will do. Therefore, it is reasonable
for this flag to normally be set, but we chose the more conservative
approach of not setting it, so that there is no possibility of
leaking space in the "partial temporary" failure case.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_free_min_time_ms\fR (int)
.ad
.RS 12n
During a \fBzfs destroy\fR operation using \fBfeature@async_destroy\fR a minimum
of this much time will be spent working on freeing blocks per txg.
.sp
Default value: \fB1,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_obsolete_min_time_ms\fR (int)
.ad
.RS 12n
Similar to \fBzfs_free_min_time_ms\fR but for cleanup of old indirection records
for removed vdevs.
.sp
Default value: \fB500\fR.
.RE
.sp
.ne 2
.na
\fBzfs_immediate_write_sz\fR (long)
.ad
.RS 12n
Largest data block to write to zil. Larger blocks will be treated as if the
dataset being written to had the property setting \fBlogbias=throughput\fR.
.sp
Default value: \fB32,768\fR.
.RE
.sp
.ne 2
.na
\fBzfs_initialize_value\fR (ulong)
.ad
.RS 12n
Pattern written to vdev free space by \fBzpool initialize\fR.
.sp
Default value: \fB16,045,690,984,833,335,022\fR (0xdeadbeefdeadbeee).
.RE
.sp
.ne 2
.na
\fBzfs_initialize_chunk_size\fR (ulong)
.ad
.RS 12n
Size of writes used by \fBzpool initialize\fR.
This option is used by the test suite to facilitate testing.
.sp
Default value: \fB1,048,576\fR
.RE
.sp
.ne 2
.na
\fBzfs_livelist_max_entries\fR (ulong)
.ad
.RS 12n
The threshold size (in block pointers) at which we create a new sub-livelist.
Larger sublists are more costly from a memory perspective but the fewer
sublists there are, the lower the cost of insertion.
.sp
Default value: \fB500,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_livelist_min_percent_shared\fR (int)
.ad
.RS 12n
If the amount of shared space between a snapshot and its clone drops below
this threshold, the clone turns off the livelist and reverts to the old deletion
method. This is in place because once a clone has been overwritten enough
livelists no long give us a benefit.
.sp
Default value: \fB75\fR.
.RE
.sp
.ne 2
.na
\fBzfs_livelist_condense_new_alloc\fR (int)
.ad
.RS 12n
Incremented each time an extra ALLOC blkptr is added to a livelist entry while
it is being condensed.
This option is used by the test suite to track race conditions.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_livelist_condense_sync_cancel\fR (int)
.ad
.RS 12n
Incremented each time livelist condensing is canceled while in
spa_livelist_condense_sync.
This option is used by the test suite to track race conditions.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_livelist_condense_sync_pause\fR (int)
.ad
.RS 12n
When set, the livelist condense process pauses indefinitely before
executing the synctask - spa_livelist_condense_sync.
This option is used by the test suite to trigger race conditions.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_livelist_condense_zthr_cancel\fR (int)
.ad
.RS 12n
Incremented each time livelist condensing is canceled while in
spa_livelist_condense_cb.
This option is used by the test suite to track race conditions.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_livelist_condense_zthr_pause\fR (int)
.ad
.RS 12n
When set, the livelist condense process pauses indefinitely before
executing the open context condensing work in spa_livelist_condense_cb.
This option is used by the test suite to trigger race conditions.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_lua_max_instrlimit\fR (ulong)
.ad
.RS 12n
The maximum execution time limit that can be set for a ZFS channel program,
specified as a number of Lua instructions.
.sp
Default value: \fB100,000,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_lua_max_memlimit\fR (ulong)
.ad
.RS 12n
The maximum memory limit that can be set for a ZFS channel program, specified
in bytes.
.sp
Default value: \fB104,857,600\fR.
.RE
.sp
.ne 2
.na
\fBzfs_max_dataset_nesting\fR (int)
.ad
.RS 12n
The maximum depth of nested datasets. This value can be tuned temporarily to
fix existing datasets that exceed the predefined limit.
.sp
Default value: \fB50\fR.
.RE
.sp
.ne 2
.na
\fBzfs_max_log_walking\fR (ulong)
.ad
.RS 12n
The number of past TXGs that the flushing algorithm of the log spacemap
feature uses to estimate incoming log blocks.
.sp
Default value: \fB5\fR.
.RE
.sp
.ne 2
.na
\fBzfs_max_logsm_summary_length\fR (ulong)
.ad
.RS 12n
Maximum number of rows allowed in the summary of the spacemap log.
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_max_recordsize\fR (int)
.ad
.RS 12n
We currently support block sizes from 512 bytes to 16MB. The benefits of
larger blocks, and thus larger I/O, need to be weighed against the cost of
COWing a giant block to modify one byte. Additionally, very large blocks
can have an impact on i/o latency, and also potentially on the memory
allocator. Therefore, we do not allow the recordsize to be set larger than
zfs_max_recordsize (default 1MB). Larger blocks can be created by changing
this tunable, and pools with larger blocks can always be imported and used,
regardless of this setting.
.sp
Default value: \fB1,048,576\fR.
.RE
.sp
.ne 2
.na
\fBzfs_allow_redacted_dataset_mount\fR (int)
.ad
.RS 12n
Allow datasets received with redacted send/receive to be mounted. Normally
disabled because these datasets may be missing key data.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_min_metaslabs_to_flush\fR (ulong)
.ad
.RS 12n
Minimum number of metaslabs to flush per dirty TXG
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_metaslab_fragmentation_threshold\fR (int)
.ad
.RS 12n
Allow metaslabs to keep their active state as long as their fragmentation
percentage is less than or equal to this value. An active metaslab that
exceeds this threshold will no longer keep its active status allowing
better metaslabs to be selected.
.sp
Default value: \fB70\fR.
.RE
.sp
.ne 2
.na
\fBzfs_mg_fragmentation_threshold\fR (int)
.ad
.RS 12n
Metaslab groups are considered eligible for allocations if their
fragmentation metric (measured as a percentage) is less than or equal to
this value. If a metaslab group exceeds this threshold then it will be
skipped unless all metaslab groups within the metaslab class have also
crossed this threshold.
.sp
Default value: \fB95\fR.
.RE
.sp
.ne 2
.na
\fBzfs_mg_noalloc_threshold\fR (int)
.ad
.RS 12n
Defines a threshold at which metaslab groups should be eligible for
allocations. The value is expressed as a percentage of free space
beyond which a metaslab group is always eligible for allocations.
If a metaslab group's free space is less than or equal to the
threshold, the allocator will avoid allocating to that group
unless all groups in the pool have reached the threshold. Once all
groups have reached the threshold, all groups are allowed to accept
allocations. The default value of 0 disables the feature and causes
all metaslab groups to be eligible for allocations.
This parameter allows one to deal with pools having heavily imbalanced
vdevs such as would be the case when a new vdev has been added.
Setting the threshold to a non-zero percentage will stop allocations
from being made to vdevs that aren't filled to the specified percentage
and allow lesser filled vdevs to acquire more allocations than they
otherwise would under the old \fBzfs_mg_alloc_failures\fR facility.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_ddt_data_is_special\fR (int)
.ad
.RS 12n
If enabled, ZFS will place DDT data into the special allocation class.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_user_indirect_is_special\fR (int)
.ad
.RS 12n
If enabled, ZFS will place user data (both file and zvol) indirect blocks
into the special allocation class.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_multihost_history\fR (int)
.ad
.RS 12n
Historical statistics for the last N multihost updates will be available in
\fB/proc/spl/kstat/zfs/<pool>/multihost\fR
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_multihost_interval\fR (ulong)
.ad
.RS 12n
Used to control the frequency of multihost writes which are performed when the
\fBmultihost\fR pool property is on. This is one factor used to determine the
length of the activity check during import.
.sp
The multihost write period is \fBzfs_multihost_interval / leaf-vdevs\fR
milliseconds. On average a multihost write will be issued for each leaf vdev
every \fBzfs_multihost_interval\fR milliseconds. In practice, the observed
period can vary with the I/O load and this observed value is the delay which is
stored in the uberblock.
.sp
Default value: \fB1000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_multihost_import_intervals\fR (uint)
.ad
.RS 12n
Used to control the duration of the activity test on import. Smaller values of
\fBzfs_multihost_import_intervals\fR will reduce the import time but increase
the risk of failing to detect an active pool. The total activity check time is
never allowed to drop below one second.
.sp
On import the activity check waits a minimum amount of time determined by
\fBzfs_multihost_interval * zfs_multihost_import_intervals\fR, or the same
product computed on the host which last had the pool imported (whichever is
greater). The activity check time may be further extended if the value of mmp
delay found in the best uberblock indicates actual multihost updates happened
at longer intervals than \fBzfs_multihost_interval\fR. A minimum value of
\fB100ms\fR is enforced.
.sp
A value of 0 is ignored and treated as if it was set to 1.
.sp
Default value: \fB20\fR.
.RE
.sp
.ne 2
.na
\fBzfs_multihost_fail_intervals\fR (uint)
.ad
.RS 12n
Controls the behavior of the pool when multihost write failures or delays are
detected.
.sp
When \fBzfs_multihost_fail_intervals = 0\fR, multihost write failures or delays
are ignored. The failures will still be reported to the ZED which depending on
its configuration may take action such as suspending the pool or offlining a
device.
.sp
When \fBzfs_multihost_fail_intervals > 0\fR, the pool will be suspended if
\fBzfs_multihost_fail_intervals * zfs_multihost_interval\fR milliseconds pass
without a successful mmp write. This guarantees the activity test will see
mmp writes if the pool is imported. A value of 1 is ignored and treated as
if it was set to 2. This is necessary to prevent the pool from being suspended
due to normal, small I/O latency variations.
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_no_scrub_io\fR (int)
.ad
.RS 12n
Set for no scrub I/O. This results in scrubs not actually scrubbing data and
simply doing a metadata crawl of the pool instead.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_no_scrub_prefetch\fR (int)
.ad
.RS 12n
Set to disable block prefetching for scrubs.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_nocacheflush\fR (int)
.ad
.RS 12n
Disable cache flush operations on disks when writing. Setting this will
cause pool corruption on power loss if a volatile out-of-order write cache
is enabled.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_nopwrite_enabled\fR (int)
.ad
.RS 12n
Enable NOP writes
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE
.sp
.ne 2
.na
\fBzfs_dmu_offset_next_sync\fR (int)
.ad
.RS 12n
Enable forcing txg sync to find holes. When enabled forces ZFS to act
like prior versions when SEEK_HOLE or SEEK_DATA flags are used, which
when a dnode is dirty causes txg's to be synced so that this data can be
found.
.sp
Use \fB1\fR for yes and \fB0\fR to disable (default).
.RE
.sp
.ne 2
.na
\fBzfs_pd_bytes_max\fR (int)
.ad
.RS 12n
The number of bytes which should be prefetched during a pool traversal
(eg: \fBzfs send\fR or other data crawling operations)
.sp
Default value: \fB52,428,800\fR.
.RE
.sp
.ne 2
.na
\fBzfs_per_txg_dirty_frees_percent \fR (ulong)
.ad
.RS 12n
Tunable to control percentage of dirtied indirect blocks from frees allowed
into one TXG. After this threshold is crossed, additional frees will wait until
the next TXG.
A value of zero will disable this throttle.
.sp
Default value: \fB5\fR, set to \fB0\fR to disable.
.RE
.sp
.ne 2
.na
\fBzfs_prefetch_disable\fR (int)
.ad
.RS 12n
This tunable disables predictive prefetch. Note that it leaves "prescient"
prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
prescient prefetch never issues i/os that end up not being needed, so it
can't hurt performance.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_qat_checksum_disable\fR (int)
.ad
.RS 12n
This tunable disables qat hardware acceleration for sha256 checksums. It
may be set after the zfs modules have been loaded to initialize the qat
hardware as long as support is compiled in and the qat driver is present.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_qat_compress_disable\fR (int)
.ad
.RS 12n
This tunable disables qat hardware acceleration for gzip compression. It
may be set after the zfs modules have been loaded to initialize the qat
hardware as long as support is compiled in and the qat driver is present.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_qat_encrypt_disable\fR (int)
.ad
.RS 12n
This tunable disables qat hardware acceleration for AES-GCM encryption. It
may be set after the zfs modules have been loaded to initialize the qat
hardware as long as support is compiled in and the qat driver is present.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_read_chunk_size\fR (long)
.ad
.RS 12n
Bytes to read per chunk
.sp
Default value: \fB1,048,576\fR.
.RE
.sp
.ne 2
.na
\fBzfs_read_history\fR (int)
.ad
.RS 12n
Historical statistics for the last N reads will be available in
\fB/proc/spl/kstat/zfs/<pool>/reads\fR
.sp
Default value: \fB0\fR (no data is kept).
.RE
.sp
.ne 2
.na
\fBzfs_read_history_hits\fR (int)
.ad
.RS 12n
Include cache hits in read history
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_rebuild_max_segment\fR (ulong)
.ad
.RS 12n
Maximum read segment size to issue when sequentially resilvering a
top-level vdev.
.sp
Default value: \fB1,048,576\fR.
.RE
.sp
.ne 2
.na
\fBzfs_reconstruct_indirect_combinations_max\fR (int)
.ad
.RS 12na
If an indirect split block contains more than this many possible unique
combinations when being reconstructed, consider it too computationally
expensive to check them all. Instead, try at most
\fBzfs_reconstruct_indirect_combinations_max\fR randomly-selected
combinations each time the block is accessed. This allows all segment
copies to participate fairly in the reconstruction when all combinations
cannot be checked and prevents repeated use of one bad copy.
.sp
Default value: \fB4096\fR.
.RE
.sp
.ne 2
.na
\fBzfs_recover\fR (int)
.ad
.RS 12n
Set to attempt to recover from fatal errors. This should only be used as a
last resort, as it typically results in leaked space, or worse.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_removal_ignore_errors\fR (int)
.ad
.RS 12n
.sp
Ignore hard IO errors during device removal. When set, if a device encounters
a hard IO error during the removal process the removal will not be cancelled.
This can result in a normally recoverable block becoming permanently damaged
and is not recommended. This should only be used as a last resort when the
pool cannot be returned to a healthy state prior to removing the device.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_removal_suspend_progress\fR (int)
.ad
.RS 12n
.sp
This is used by the test suite so that it can ensure that certain actions
happen while in the middle of a removal.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_remove_max_segment\fR (int)
.ad
.RS 12n
.sp
The largest contiguous segment that we will attempt to allocate when removing
a device. This can be no larger than 16MB. If there is a performance
problem with attempting to allocate large blocks, consider decreasing this.
.sp
Default value: \fB16,777,216\fR (16MB).
.RE
.sp
.ne 2
.na
\fBzfs_resilver_disable_defer\fR (int)
.ad
.RS 12n
Disables the \fBresilver_defer\fR feature, causing an operation that would
start a resilver to restart one in progress immediately.
.sp
Default value: \fB0\fR (feature enabled).
.RE
.sp
.ne 2
.na
\fBzfs_resilver_min_time_ms\fR (int)
.ad
.RS 12n
Resilvers are processed by the sync thread. While resilvering it will spend
at least this much time working on a resilver between txg flushes.
.sp
Default value: \fB3,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_ignore_errors\fR (int)
.ad
.RS 12n
If set to a nonzero value, remove the DTL (dirty time list) upon
completion of a pool scan (scrub) even if there were unrepairable
errors. It is intended to be used during pool repair or recovery to
stop resilvering when the pool is next imported.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scrub_min_time_ms\fR (int)
.ad
.RS 12n
Scrubs are processed by the sync thread. While scrubbing it will spend
at least this much time working on a scrub between txg flushes.
.sp
Default value: \fB1,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_checkpoint_intval\fR (int)
.ad
.RS 12n
To preserve progress across reboots the sequential scan algorithm periodically
needs to stop metadata scanning and issue all the verifications I/Os to disk.
The frequency of this flushing is determined by the
\fBzfs_scan_checkpoint_intval\fR tunable.
.sp
Default value: \fB7200\fR seconds (every 2 hours).
.RE
.sp
.ne 2
.na
\fBzfs_scan_fill_weight\fR (int)
.ad
.RS 12n
This tunable affects how scrub and resilver I/O segments are ordered. A higher
number indicates that we care more about how filled in a segment is, while a
lower number indicates we care more about the size of the extent without
considering the gaps within a segment. This value is only tunable upon module
insertion. Changing the value afterwards will have no affect on scrub or
resilver performance.
.sp
Default value: \fB3\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_issue_strategy\fR (int)
.ad
.RS 12n
Determines the order that data will be verified while scrubbing or resilvering.
If set to \fB1\fR, data will be verified as sequentially as possible, given the
amount of memory reserved for scrubbing (see \fBzfs_scan_mem_lim_fact\fR). This
may improve scrub performance if the pool's data is very fragmented. If set to
\fB2\fR, the largest mostly-contiguous chunk of found data will be verified
first. By deferring scrubbing of small segments, we may later find adjacent data
to coalesce and increase the segment size. If set to \fB0\fR, zfs will use
strategy \fB1\fR during normal verification and strategy \fB2\fR while taking a
checkpoint.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_legacy\fR (int)
.ad
.RS 12n
A value of 0 indicates that scrubs and resilvers will gather metadata in
memory before issuing sequential I/O. A value of 1 indicates that the legacy
algorithm will be used where I/O is initiated as soon as it is discovered.
Changing this value to 0 will not affect scrubs or resilvers that are already
in progress.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_max_ext_gap\fR (int)
.ad
.RS 12n
Indicates the largest gap in bytes between scrub / resilver I/Os that will still
be considered sequential for sorting purposes. Changing this value will not
affect scrubs or resilvers that are already in progress.
.sp
Default value: \fB2097152 (2 MB)\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_mem_lim_fact\fR (int)
.ad
.RS 12n
Maximum fraction of RAM used for I/O sorting by sequential scan algorithm.
This tunable determines the hard limit for I/O sorting memory usage.
When the hard limit is reached we stop scanning metadata and start issuing
data verification I/O. This is done until we get below the soft limit.
.sp
Default value: \fB20\fR which is 5% of RAM (1/20).
.RE
.sp
.ne 2
.na
\fBzfs_scan_mem_lim_soft_fact\fR (int)
.ad
.RS 12n
The fraction of the hard limit used to determined the soft limit for I/O sorting
by the sequential scan algorithm. When we cross this limit from below no action
is taken. When we cross this limit from above it is because we are issuing
verification I/O. In this case (unless the metadata scan is done) we stop
issuing verification I/O and start scanning metadata again until we get to the
hard limit.
.sp
Default value: \fB20\fR which is 5% of the hard limit (1/20).
.RE
.sp
.ne 2
.na
\fBzfs_scan_strict_mem_lim\fR (int)
.ad
.RS 12n
Enforces tight memory limits on pool scans when a sequential scan is in
progress. When disabled the memory limit may be exceeded by fast disks.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_suspend_progress\fR (int)
.ad
.RS 12n
Freezes a scrub/resilver in progress without actually pausing it. Intended for
testing/debugging.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_scan_vdev_limit\fR (int)
.ad
.RS 12n
Maximum amount of data that can be concurrently issued at once for scrubs and
resilvers per leaf device, given in bytes.
.sp
Default value: \fB41943040\fR.
.RE
.sp
.ne 2
.na
\fBzfs_send_corrupt_data\fR (int)
.ad
.RS 12n
Allow sending of corrupt data (ignore read/checksum errors when sending data)
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_send_unmodified_spill_blocks\fR (int)
.ad
.RS 12n
Include unmodified spill blocks in the send stream. Under certain circumstances
previous versions of ZFS could incorrectly remove the spill block from an
existing object. Including unmodified copies of the spill blocks creates a
backwards compatible stream which will recreate a spill block if it was
incorrectly removed.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE
.sp
.ne 2
.na
\fBzfs_send_no_prefetch_queue_ff\fR (int)
.ad
.RS 12n
The fill fraction of the \fBzfs send\fR internal queues. The fill fraction
controls the timing with which internal threads are woken up.
.sp
Default value: \fB20\fR.
.RE
.sp
.ne 2
.na
\fBzfs_send_no_prefetch_queue_length\fR (int)
.ad
.RS 12n
The maximum number of bytes allowed in \fBzfs send\fR's internal queues.
.sp
Default value: \fB1,048,576\fR.
.RE
.sp
.ne 2
.na
\fBzfs_send_queue_ff\fR (int)
.ad
.RS 12n
The fill fraction of the \fBzfs send\fR prefetch queue. The fill fraction
controls the timing with which internal threads are woken up.
.sp
Default value: \fB20\fR.
.RE
.sp
.ne 2
.na
\fBzfs_send_queue_length\fR (int)
.ad
.RS 12n
The maximum number of bytes allowed that will be prefetched by \fBzfs send\fR.
This value must be at least twice the maximum block size in use.
.sp
Default value: \fB16,777,216\fR.
.RE
.sp
.ne 2
.na
\fBzfs_recv_queue_ff\fR (int)
.ad
.RS 12n
The fill fraction of the \fBzfs receive\fR queue. The fill fraction
controls the timing with which internal threads are woken up.
.sp
Default value: \fB20\fR.
.RE
.sp
.ne 2
.na
\fBzfs_recv_queue_length\fR (int)
.ad
.RS 12n
The maximum number of bytes allowed in the \fBzfs receive\fR queue. This value
must be at least twice the maximum block size in use.
.sp
Default value: \fB16,777,216\fR.
.RE
.sp
.ne 2
.na
\fBzfs_recv_write_batch_size\fR (int)
.ad
.RS 12n
The maximum amount of data (in bytes) that \fBzfs receive\fR will write in
one DMU transaction. This is the uncompressed size, even when receiving a
compressed send stream. This setting will not reduce the write size below
a single block. Capped at a maximum of 32MB
.sp
Default value: \fB1MB\fR.
.RE
.sp
.ne 2
.na
\fBzfs_override_estimate_recordsize\fR (ulong)
.ad
.RS 12n
Setting this variable overrides the default logic for estimating block
sizes when doing a zfs send. The default heuristic is that the average
block size will be the current recordsize. Override this value if most data
in your dataset is not of that size and you require accurate zfs send size
estimates.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_sync_pass_deferred_free\fR (int)
.ad
.RS 12n
Flushing of data to disk is done in passes. Defer frees starting in this pass
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_spa_discard_memory_limit\fR (int)
.ad
.RS 12n
Maximum memory used for prefetching a checkpoint's space map on each
vdev while discarding the checkpoint.
.sp
Default value: \fB16,777,216\fR.
.RE
.sp
.ne 2
.na
\fBzfs_special_class_metadata_reserve_pct\fR (int)
.ad
.RS 12n
Only allow small data blocks to be allocated on the special and dedup vdev
types when the available free space percentage on these vdevs exceeds this
value. This ensures reserved space is available for pool meta data as the
special vdevs approach capacity.
.sp
Default value: \fB25\fR.
.RE
.sp
.ne 2
.na
\fBzfs_sync_pass_dont_compress\fR (int)
.ad
.RS 12n
Starting in this sync pass, we disable compression (including of metadata).
With the default setting, in practice, we don't have this many sync passes,
so this has no effect.
.sp
The original intent was that disabling compression would help the sync passes
to converge. However, in practice disabling compression increases the average
number of sync passes, because when we turn compression off, a lot of block's
size will change and thus we have to re-allocate (not overwrite) them. It
also increases the number of 128KB allocations (e.g. for indirect blocks and
spacemaps) because these will not be compressed. The 128K allocations are
especially detrimental to performance on highly fragmented systems, which may
have very few free segments of this size, and may need to load new metaslabs
to satisfy 128K allocations.
.sp
Default value: \fB8\fR.
.RE
.sp
.ne 2
.na
\fBzfs_sync_pass_rewrite\fR (int)
.ad
.RS 12n
Rewrite new block pointers starting in this pass
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_sync_taskq_batch_pct\fR (int)
.ad
.RS 12n
This controls the number of threads used by the dp_sync_taskq. The default
value of 75% will create a maximum of one thread per cpu.
.sp
Default value: \fB75\fR%.
.RE
.sp
.ne 2
.na
\fBzfs_trim_extent_bytes_max\fR (uint)
.ad
.RS 12n
Maximum size of TRIM command. Ranges larger than this will be split in to
chunks no larger than \fBzfs_trim_extent_bytes_max\fR bytes before being
issued to the device.
.sp
Default value: \fB134,217,728\fR.
.RE
.sp
.ne 2
.na
\fBzfs_trim_extent_bytes_min\fR (uint)
.ad
.RS 12n
Minimum size of TRIM commands. TRIM ranges smaller than this will be skipped
unless they're part of a larger range which was broken in to chunks. This is
done because it's common for these small TRIMs to negatively impact overall
performance. This value can be set to 0 to TRIM all unallocated space.
.sp
Default value: \fB32,768\fR.
.RE
.sp
.ne 2
.na
\fBzfs_trim_metaslab_skip\fR (uint)
.ad
.RS 12n
Skip uninitialized metaslabs during the TRIM process. This option is useful
for pools constructed from large thinly-provisioned devices where TRIM
operations are slow. As a pool ages an increasing fraction of the pools
metaslabs will be initialized progressively degrading the usefulness of
this option. This setting is stored when starting a manual TRIM and will
persist for the duration of the requested TRIM.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_trim_queue_limit\fR (uint)
.ad
.RS 12n
Maximum number of queued TRIMs outstanding per leaf vdev. The number of
concurrent TRIM commands issued to the device is controlled by the
\fBzfs_vdev_trim_min_active\fR and \fBzfs_vdev_trim_max_active\fR module
options.
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_trim_txg_batch\fR (uint)
.ad
.RS 12n
The number of transaction groups worth of frees which should be aggregated
before TRIM operations are issued to the device. This setting represents a
trade-off between issuing larger, more efficient TRIM operations and the
delay before the recently trimmed space is available for use by the device.
.sp
Increasing this value will allow frees to be aggregated for a longer time.
This will result is larger TRIM operations and potentially increased memory
usage. Decreasing this value will have the opposite effect. The default
value of 32 was determined to be a reasonable compromise.
.sp
Default value: \fB32\fR.
.RE
.sp
.ne 2
.na
\fBzfs_txg_history\fR (int)
.ad
.RS 12n
Historical statistics for the last N txgs will be available in
\fB/proc/spl/kstat/zfs/<pool>/txgs\fR
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_txg_timeout\fR (int)
.ad
.RS 12n
Flush dirty data to disk at least every N seconds (maximum txg duration)
.sp
Default value: \fB5\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_aggregate_trim\fR (int)
.ad
.RS 12n
Allow TRIM I/Os to be aggregated. This is normally not helpful because
the extents to be trimmed will have been already been aggregated by the
metaslab. This option is provided for debugging and performance analysis.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_aggregation_limit\fR (int)
.ad
.RS 12n
Max vdev I/O aggregation size
.sp
Default value: \fB1,048,576\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_aggregation_limit_non_rotating\fR (int)
.ad
.RS 12n
Max vdev I/O aggregation size for non-rotating media
.sp
Default value: \fB131,072\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_cache_bshift\fR (int)
.ad
.RS 12n
Shift size to inflate reads too
.sp
Default value: \fB16\fR (effectively 65536).
.RE
.sp
.ne 2
.na
\fBzfs_vdev_cache_max\fR (int)
.ad
.RS 12n
Inflate reads smaller than this value to meet the \fBzfs_vdev_cache_bshift\fR
size (default 64k).
.sp
Default value: \fB16384\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_cache_size\fR (int)
.ad
.RS 12n
Total size of the per-disk cache in bytes.
.sp
Currently this feature is disabled as it has been found to not be helpful
for performance and in some cases harmful.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_mirror_rotating_inc\fR (int)
.ad
.RS 12n
A number by which the balancing algorithm increments the load calculation for
the purpose of selecting the least busy mirror member when an I/O immediately
follows its predecessor on rotational vdevs for the purpose of making decisions
based on load.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_mirror_rotating_seek_inc\fR (int)
.ad
.RS 12n
A number by which the balancing algorithm increments the load calculation for
the purpose of selecting the least busy mirror member when an I/O lacks
locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
this that are not immediately following the previous I/O are incremented by
half.
.sp
Default value: \fB5\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_mirror_rotating_seek_offset\fR (int)
.ad
.RS 12n
The maximum distance for the last queued I/O in which the balancing algorithm
considers an I/O to have locality.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1048576\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_mirror_non_rotating_inc\fR (int)
.ad
.RS 12n
A number by which the balancing algorithm increments the load calculation for
the purpose of selecting the least busy mirror member on non-rotational vdevs
when I/Os do not immediately follow one another.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_mirror_non_rotating_seek_inc\fR (int)
.ad
.RS 12n
A number by which the balancing algorithm increments the load calculation for
the purpose of selecting the least busy mirror member when an I/O lacks
locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
this that are not immediately following the previous I/O are incremented by
half.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_read_gap_limit\fR (int)
.ad
.RS 12n
Aggregate read I/O operations if the gap on-disk between them is within this
threshold.
.sp
Default value: \fB32,768\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_write_gap_limit\fR (int)
.ad
.RS 12n
Aggregate write I/O over gap
.sp
Default value: \fB4,096\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_raidz_impl\fR (string)
.ad
.RS 12n
Parameter for selecting raidz parity implementation to use.
Options marked (always) below may be selected on module load as they are
supported on all systems.
The remaining options may only be set after the module is loaded, as they
are available only if the implementations are compiled in and supported
on the running system.
Once the module is loaded, the content of
/sys/module/zfs/parameters/zfs_vdev_raidz_impl will show available options
with the currently selected one enclosed in [].
Possible options are:
fastest - (always) implementation selected using built-in benchmark
original - (always) original raidz implementation
scalar - (always) scalar raidz implementation
sse2 - implementation using SSE2 instruction set (64bit x86 only)
ssse3 - implementation using SSSE3 instruction set (64bit x86 only)
avx2 - implementation using AVX2 instruction set (64bit x86 only)
avx512f - implementation using AVX512F instruction set (64bit x86 only)
avx512bw - implementation using AVX512F & AVX512BW instruction sets (64bit x86 only)
aarch64_neon - implementation using NEON (Aarch64/64 bit ARMv8 only)
aarch64_neonx2 - implementation using NEON with more unrolling (Aarch64/64 bit ARMv8 only)
powerpc_altivec - implementation using Altivec (PowerPC only)
.sp
Default value: \fBfastest\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_scheduler\fR (charp)
.ad
.RS 12n
\fBDEPRECATED\fR: This option exists for compatibility with older user
configurations. It does nothing except print a warning to the kernel log if
set.
.sp
.RE
.sp
.ne 2
.na
\fBzfs_zevent_cols\fR (int)
.ad
.RS 12n
When zevents are logged to the console use this as the word wrap width.
.sp
Default value: \fB80\fR.
.RE
.sp
.ne 2
.na
\fBzfs_zevent_console\fR (int)
.ad
.RS 12n
Log events to the console
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_zevent_len_max\fR (int)
.ad
.RS 12n
Max event queue length. A value of 0 will result in a calculated value which
increases with the number of CPUs in the system (minimum 64 events). Events
in the queue can be viewed with the \fBzpool events\fR command.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_zevent_retain_max\fR (int)
.ad
.RS 12n
Maximum recent zevent records to retain for duplicate checking. Setting
this value to zero disables duplicate detection.
.sp
Default value: \fB2000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_zevent_retain_expire_secs\fR (int)
.ad
.RS 12n
Lifespan for a recent ereport that was retained for duplicate checking.
.sp
Default value: \fB900\fR.
.RE
.na
\fBzfs_zil_clean_taskq_maxalloc\fR (int)
.ad
.RS 12n
The maximum number of taskq entries that are allowed to be cached. When this
limit is exceeded transaction records (itxs) will be cleaned synchronously.
.sp
Default value: \fB1048576\fR.
.RE
.sp
.ne 2
.na
\fBzfs_zil_clean_taskq_minalloc\fR (int)
.ad
.RS 12n
The number of taskq entries that are pre-populated when the taskq is first
created and are immediately available for use.
.sp
Default value: \fB1024\fR.
.RE
.sp
.ne 2
.na
\fBzfs_zil_clean_taskq_nthr_pct\fR (int)
.ad
.RS 12n
This controls the number of threads used by the dp_zil_clean_taskq. The default
value of 100% will create a maximum of one thread per cpu.
.sp
Default value: \fB100\fR%.
.RE
.sp
.ne 2
.na
\fBzil_maxblocksize\fR (int)
.ad
.RS 12n
This sets the maximum block size used by the ZIL. On very fragmented pools,
lowering this (typically to 36KB) can improve performance.
.sp
Default value: \fB131072\fR (128KB).
.RE
.sp
.ne 2
.na
\fBzil_nocacheflush\fR (int)
.ad
.RS 12n
Disable the cache flush commands that are normally sent to the disk(s) by
the ZIL after an LWB write has completed. Setting this will cause ZIL
corruption on power loss if a volatile out-of-order write cache is enabled.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzil_replay_disable\fR (int)
.ad
.RS 12n
Disable intent logging replay. Can be disabled for recovery from corrupted
ZIL
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzil_slog_bulk\fR (ulong)
.ad
.RS 12n
Limit SLOG write size per commit executed with synchronous priority.
Any writes above that will be executed with lower (asynchronous) priority
to limit potential SLOG device abuse by single active ZIL writer.
.sp
Default value: \fB786,432\fR.
.RE
.sp
.ne 2
.na
\fBzio_deadman_log_all\fR (int)
.ad
.RS 12n
If non-zero, the zio deadman will produce debugging messages (see
\fBzfs_dbgmsg_enable\fR) for all zios, rather than only for leaf
zios possessing a vdev. This is meant to be used by developers to gain
diagnostic information for hang conditions which don't involve a mutex
or other locking primitive; typically conditions in which a thread in
the zio pipeline is looping indefinitely.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzio_decompress_fail_fraction\fR (int)
.ad
.RS 12n
If non-zero, this value represents the denominator of the probability that zfs
should induce a decompression failure. For instance, for a 5% decompression
failure rate, this value should be set to 20.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzio_slow_io_ms\fR (int)
.ad
.RS 12n
When an I/O operation takes more than \fBzio_slow_io_ms\fR milliseconds to
complete is marked as a slow I/O. Each slow I/O causes a delay zevent. Slow
I/O counters can be seen with "zpool status -s".
.sp
Default value: \fB30,000\fR.
.RE
.sp
.ne 2
.na
\fBzio_dva_throttle_enabled\fR (int)
.ad
.RS 12n
Throttle block allocations in the I/O pipeline. This allows for
dynamic allocation distribution when devices are imbalanced.
When enabled, the maximum number of pending allocations per top-level vdev
is limited by \fBzfs_vdev_queue_depth_pct\fR.
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzio_requeue_io_start_cut_in_line\fR (int)
.ad
.RS 12n
Prioritize requeued I/O
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzio_taskq_batch_pct\fR (uint)
.ad
.RS 12n
Percentage of online CPUs (or CPU cores, etc) which will run a worker thread
for I/O. These workers are responsible for I/O work such as compression and
checksum calculations. Fractional number of CPUs will be rounded down.
.sp
The default value of 75 was chosen to avoid using all CPUs which can result in
latency issues and inconsistent application performance, especially when high
compression is enabled.
.sp
Default value: \fB75\fR.
.RE
.sp
.ne 2
.na
\fBzvol_inhibit_dev\fR (uint)
.ad
.RS 12n
Do not create zvol device nodes. This may slightly improve startup time on
systems with a very large number of zvols.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzvol_major\fR (uint)
.ad
.RS 12n
Major number for zvol block devices
.sp
Default value: \fB230\fR.
.RE
.sp
.ne 2
.na
\fBzvol_max_discard_blocks\fR (ulong)
.ad
.RS 12n
Discard (aka TRIM) operations done on zvols will be done in batches of this
many blocks, where block size is determined by the \fBvolblocksize\fR property
of a zvol.
.sp
Default value: \fB16,384\fR.
.RE
.sp
.ne 2
.na
\fBzvol_prefetch_bytes\fR (uint)
.ad
.RS 12n
When adding a zvol to the system prefetch \fBzvol_prefetch_bytes\fR
from the start and end of the volume. Prefetching these regions
of the volume is desirable because they are likely to be accessed
immediately by \fBblkid(8)\fR or by the kernel scanning for a partition
table.
.sp
Default value: \fB131,072\fR.
.RE
.sp
.ne 2
.na
\fBzvol_request_sync\fR (uint)
.ad
.RS 12n
When processing I/O requests for a zvol submit them synchronously. This
effectively limits the queue depth to 1 for each I/O submitter. When set
to 0 requests are handled asynchronously by a thread pool. The number of
requests which can be handled concurrently is controller by \fBzvol_threads\fR.
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzvol_threads\fR (uint)
.ad
.RS 12n
Max number of threads which can handle zvol I/O requests concurrently.
.sp
Default value: \fB32\fR.
.RE
.sp
.ne 2
.na
\fBzvol_volmode\fR (uint)
.ad
.RS 12n
Defines zvol block devices behaviour when \fBvolmode\fR is set to \fBdefault\fR.
Valid values are \fB1\fR (full), \fB2\fR (dev) and \fB3\fR (none).
.sp
Default value: \fB1\fR.
.RE
.SH ZFS I/O SCHEDULER
ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
The I/O scheduler determines when and in what order those operations are
issued. The I/O scheduler divides operations into five I/O classes
prioritized in the following order: sync read, sync write, async read,
async write, and scrub/resilver. Each queue defines the minimum and
maximum number of concurrent operations that may be issued to the
device. In addition, the device has an aggregate maximum,
\fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
must not exceed the aggregate maximum. If the sum of the per-queue
maximums exceeds the aggregate maximum, then the number of active I/Os
may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
be issued regardless of whether all per-queue minimums have been met.
.sp
For many physical devices, throughput increases with the number of
concurrent operations, but latency typically suffers. Further, physical
devices typically have a limit at which more concurrent operations have no
effect on throughput or can actually cause it to decrease.
.sp
The scheduler selects the next operation to issue by first looking for an
I/O class whose minimum has not been satisfied. Once all are satisfied and
the aggregate maximum has not been hit, the scheduler looks for classes
whose maximum has not been satisfied. Iteration through the I/O classes is
done in the order specified above. No further operations are issued if the
aggregate maximum number of concurrent operations has been hit or if there
are no operations queued for an I/O class that has not hit its maximum.
Every time an I/O is queued or an operation completes, the I/O scheduler
looks for new operations to issue.
.sp
In general, smaller max_active's will lead to lower latency of synchronous
operations. Larger max_active's may lead to higher overall throughput,
depending on underlying storage.
.sp
The ratio of the queues' max_actives determines the balance of performance
between reads, writes, and scrubs. E.g., increasing
\fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
more quickly, but reads and writes to have higher latency and lower throughput.
.sp
All I/O classes have a fixed maximum number of outstanding operations
except for the async write class. Asynchronous writes represent the data
that is committed to stable storage during the syncing stage for
transaction groups. Transaction groups enter the syncing state
periodically so the number of queued async writes will quickly burst up
and then bleed down to zero. Rather than servicing them as quickly as
possible, the I/O scheduler changes the maximum number of active async
write I/Os according to the amount of dirty data in the pool. Since
both throughput and latency typically increase with the number of
concurrent operations issued to physical devices, reducing the
burstiness in the number of concurrent operations also stabilizes the
response time of operations from other -- and in particular synchronous
-- queues. In broad strokes, the I/O scheduler will issue more
concurrent operations from the async write queue as there's more dirty
data in the pool.
.sp
Async Writes
.sp
The number of concurrent operations issued for the async write I/O class
follows a piece-wise linear function defined by a few adjustable points.
.nf
| o---------| <-- zfs_vdev_async_write_max_active
^ | /^ |
| | / | |
active | / | |
I/O | / | |
count | / | |
| / | |
|-------o | | <-- zfs_vdev_async_write_min_active
0|_______^______|_________|
0% | | 100% of zfs_dirty_data_max
| |
| `-- zfs_vdev_async_write_active_max_dirty_percent
`--------- zfs_vdev_async_write_active_min_dirty_percent
.fi
Until the amount of dirty data exceeds a minimum percentage of the dirty
data allowed in the pool, the I/O scheduler will limit the number of
concurrent operations to the minimum. As that threshold is crossed, the
number of concurrent operations issued increases linearly to the maximum at
the specified maximum percentage of the dirty data allowed in the pool.
.sp
Ideally, the amount of dirty data on a busy pool will stay in the sloped
part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
maximum percentage, this indicates that the rate of incoming data is
greater than the rate that the backend storage can handle. In this case, we
must further throttle incoming writes, as described in the next section.
.SH ZFS TRANSACTION DELAY
We delay transactions when we've determined that the backend storage
isn't able to accommodate the rate of incoming writes.
.sp
If there is already a transaction waiting, we delay relative to when
that transaction will finish waiting. This way the calculated delay time
is independent of the number of threads concurrently executing
transactions.
.sp
If we are the only waiter, wait relative to when the transaction
started, rather than the current time. This credits the transaction for
"time already served", e.g. reading indirect blocks.
.sp
The minimum time for a transaction to take is calculated as:
.nf
min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
min_time is then capped at 100 milliseconds.
.fi
.sp
The delay has two degrees of freedom that can be adjusted via tunables. The
percentage of dirty data at which we start to delay is defined by
\fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
\fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
delay after writing at full speed has failed to keep up with the incoming write
rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
this variable determines the amount of delay at the midpoint of the curve.
.sp
.nf
delay
10ms +-------------------------------------------------------------*+
| *|
9ms + *+
| *|
8ms + *+
| * |
7ms + * +
| * |
6ms + * +
| * |
5ms + * +
| * |
4ms + * +
| * |
3ms + * +
| * |
2ms + (midpoint) * +
| | ** |
1ms + v *** +
| zfs_delay_scale ----------> ******** |
0 +-------------------------------------*********----------------+
0% <- zfs_dirty_data_max -> 100%
.fi
.sp
Note that since the delay is added to the outstanding time remaining on the
most recent transaction, the delay is effectively the inverse of IOPS.
Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
was chosen such that small changes in the amount of accumulated dirty data
in the first 3/4 of the curve yield relatively small differences in the
amount of delay.
.sp
The effects can be easier to understand when the amount of delay is
represented on a log scale:
.sp
.nf
delay
100ms +-------------------------------------------------------------++
+ +
| |
+ *+
10ms + *+
+ ** +
| (midpoint) ** |
+ | ** +
1ms + v **** +
+ zfs_delay_scale ----------> ***** +
| **** |
+ **** +
100us + ** +
+ * +
| * |
+ * +
10us + * +
+ +
| |
+ +
+--------------------------------------------------------------+
0% <- zfs_dirty_data_max -> 100%
.fi
.sp
Note here that only as the amount of dirty data approaches its limit does
the delay start to increase rapidly. The goal of a properly tuned system
should be to keep the amount of dirty data out of that range by first
ensuring that the appropriate limits are set for the I/O scheduler to reach
optimal throughput on the backend storage, and then by changing the value
of \fBzfs_delay_scale\fR to increase the steepness of the curve.