1588 lines
42 KiB
C
1588 lines
42 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <sys/zfs_context.h>
|
||
|
#include <modes/modes.h>
|
||
|
#include <sys/crypto/common.h>
|
||
|
#include <sys/crypto/icp.h>
|
||
|
#include <sys/crypto/impl.h>
|
||
|
#include <sys/byteorder.h>
|
||
|
#include <sys/simd.h>
|
||
|
#include <modes/gcm_impl.h>
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
#include <aes/aes_impl.h>
|
||
|
#endif
|
||
|
|
||
|
#define GHASH(c, d, t, o) \
|
||
|
xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \
|
||
|
(o)->mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \
|
||
|
(uint64_t *)(void *)(t));
|
||
|
|
||
|
/* Select GCM implementation */
|
||
|
#define IMPL_FASTEST (UINT32_MAX)
|
||
|
#define IMPL_CYCLE (UINT32_MAX-1)
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
#define IMPL_AVX (UINT32_MAX-2)
|
||
|
#endif
|
||
|
#define GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i))
|
||
|
static uint32_t icp_gcm_impl = IMPL_FASTEST;
|
||
|
static uint32_t user_sel_impl = IMPL_FASTEST;
|
||
|
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
/* Does the architecture we run on support the MOVBE instruction? */
|
||
|
boolean_t gcm_avx_can_use_movbe = B_FALSE;
|
||
|
/*
|
||
|
* Whether to use the optimized openssl gcm and ghash implementations.
|
||
|
* Set to true if module parameter icp_gcm_impl == "avx".
|
||
|
*/
|
||
|
static boolean_t gcm_use_avx = B_FALSE;
|
||
|
#define GCM_IMPL_USE_AVX (*(volatile boolean_t *)&gcm_use_avx)
|
||
|
|
||
|
extern boolean_t atomic_toggle_boolean_nv(volatile boolean_t *);
|
||
|
|
||
|
static inline boolean_t gcm_avx_will_work(void);
|
||
|
static inline void gcm_set_avx(boolean_t);
|
||
|
static inline boolean_t gcm_toggle_avx(void);
|
||
|
static inline size_t gcm_simd_get_htab_size(boolean_t);
|
||
|
|
||
|
static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t,
|
||
|
crypto_data_t *, size_t);
|
||
|
|
||
|
static int gcm_encrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
|
||
|
static int gcm_decrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
|
||
|
static int gcm_init_avx(gcm_ctx_t *, unsigned char *, size_t, unsigned char *,
|
||
|
size_t, size_t);
|
||
|
#endif /* ifdef CAN_USE_GCM_ASM */
|
||
|
|
||
|
/*
|
||
|
* Encrypt multiple blocks of data in GCM mode. Decrypt for GCM mode
|
||
|
* is done in another function.
|
||
|
*/
|
||
|
int
|
||
|
gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
|
||
|
crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
if (ctx->gcm_use_avx == B_TRUE)
|
||
|
return (gcm_mode_encrypt_contiguous_blocks_avx(
|
||
|
ctx, data, length, out, block_size));
|
||
|
#endif
|
||
|
|
||
|
const gcm_impl_ops_t *gops;
|
||
|
size_t remainder = length;
|
||
|
size_t need = 0;
|
||
|
uint8_t *datap = (uint8_t *)data;
|
||
|
uint8_t *blockp;
|
||
|
uint8_t *lastp;
|
||
|
void *iov_or_mp;
|
||
|
offset_t offset;
|
||
|
uint8_t *out_data_1;
|
||
|
uint8_t *out_data_2;
|
||
|
size_t out_data_1_len;
|
||
|
uint64_t counter;
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
|
||
|
if (length + ctx->gcm_remainder_len < block_size) {
|
||
|
/* accumulate bytes here and return */
|
||
|
bcopy(datap,
|
||
|
(uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len,
|
||
|
length);
|
||
|
ctx->gcm_remainder_len += length;
|
||
|
if (ctx->gcm_copy_to == NULL) {
|
||
|
ctx->gcm_copy_to = datap;
|
||
|
}
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
lastp = (uint8_t *)ctx->gcm_cb;
|
||
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
||
|
|
||
|
gops = gcm_impl_get_ops();
|
||
|
do {
|
||
|
/* Unprocessed data from last call. */
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
need = block_size - ctx->gcm_remainder_len;
|
||
|
|
||
|
if (need > remainder)
|
||
|
return (CRYPTO_DATA_LEN_RANGE);
|
||
|
|
||
|
bcopy(datap, &((uint8_t *)ctx->gcm_remainder)
|
||
|
[ctx->gcm_remainder_len], need);
|
||
|
|
||
|
blockp = (uint8_t *)ctx->gcm_remainder;
|
||
|
} else {
|
||
|
blockp = datap;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Increment counter. Counter bits are confined
|
||
|
* to the bottom 32 bits of the counter block.
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
|
||
|
(uint8_t *)ctx->gcm_tmp);
|
||
|
xor_block(blockp, (uint8_t *)ctx->gcm_tmp);
|
||
|
|
||
|
lastp = (uint8_t *)ctx->gcm_tmp;
|
||
|
|
||
|
ctx->gcm_processed_data_len += block_size;
|
||
|
|
||
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
||
|
&out_data_1_len, &out_data_2, block_size);
|
||
|
|
||
|
/* copy block to where it belongs */
|
||
|
if (out_data_1_len == block_size) {
|
||
|
copy_block(lastp, out_data_1);
|
||
|
} else {
|
||
|
bcopy(lastp, out_data_1, out_data_1_len);
|
||
|
if (out_data_2 != NULL) {
|
||
|
bcopy(lastp + out_data_1_len,
|
||
|
out_data_2,
|
||
|
block_size - out_data_1_len);
|
||
|
}
|
||
|
}
|
||
|
/* update offset */
|
||
|
out->cd_offset += block_size;
|
||
|
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gops);
|
||
|
|
||
|
/* Update pointer to next block of data to be processed. */
|
||
|
if (ctx->gcm_remainder_len != 0) {
|
||
|
datap += need;
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
} else {
|
||
|
datap += block_size;
|
||
|
}
|
||
|
|
||
|
remainder = (size_t)&data[length] - (size_t)datap;
|
||
|
|
||
|
/* Incomplete last block. */
|
||
|
if (remainder > 0 && remainder < block_size) {
|
||
|
bcopy(datap, ctx->gcm_remainder, remainder);
|
||
|
ctx->gcm_remainder_len = remainder;
|
||
|
ctx->gcm_copy_to = datap;
|
||
|
goto out;
|
||
|
}
|
||
|
ctx->gcm_copy_to = NULL;
|
||
|
|
||
|
} while (remainder > 0);
|
||
|
out:
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* ARGSUSED */
|
||
|
int
|
||
|
gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
if (ctx->gcm_use_avx == B_TRUE)
|
||
|
return (gcm_encrypt_final_avx(ctx, out, block_size));
|
||
|
#endif
|
||
|
|
||
|
const gcm_impl_ops_t *gops;
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
uint8_t *ghash, *macp = NULL;
|
||
|
int i, rv;
|
||
|
|
||
|
if (out->cd_length <
|
||
|
(ctx->gcm_remainder_len + ctx->gcm_tag_len)) {
|
||
|
return (CRYPTO_DATA_LEN_RANGE);
|
||
|
}
|
||
|
|
||
|
gops = gcm_impl_get_ops();
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
uint64_t counter;
|
||
|
uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp;
|
||
|
|
||
|
/*
|
||
|
* Here is where we deal with data that is not a
|
||
|
* multiple of the block size.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Increment counter.
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
|
||
|
(uint8_t *)ctx->gcm_tmp);
|
||
|
|
||
|
macp = (uint8_t *)ctx->gcm_remainder;
|
||
|
bzero(macp + ctx->gcm_remainder_len,
|
||
|
block_size - ctx->gcm_remainder_len);
|
||
|
|
||
|
/* XOR with counter block */
|
||
|
for (i = 0; i < ctx->gcm_remainder_len; i++) {
|
||
|
macp[i] ^= tmpp[i];
|
||
|
}
|
||
|
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, macp, ghash, gops);
|
||
|
|
||
|
ctx->gcm_processed_data_len += ctx->gcm_remainder_len;
|
||
|
}
|
||
|
|
||
|
ctx->gcm_len_a_len_c[1] =
|
||
|
htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
|
||
|
GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
|
||
|
(uint8_t *)ctx->gcm_J0);
|
||
|
xor_block((uint8_t *)ctx->gcm_J0, ghash);
|
||
|
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
}
|
||
|
out->cd_offset += ctx->gcm_remainder_len;
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
out->cd_offset += ctx->gcm_tag_len;
|
||
|
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This will only deal with decrypting the last block of the input that
|
||
|
* might not be a multiple of block length.
|
||
|
*/
|
||
|
static void
|
||
|
gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
uint8_t *datap, *outp, *counterp;
|
||
|
uint64_t counter;
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Increment counter.
|
||
|
* Counter bits are confined to the bottom 32 bits
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
datap = (uint8_t *)ctx->gcm_remainder;
|
||
|
outp = &((ctx->gcm_pt_buf)[index]);
|
||
|
counterp = (uint8_t *)ctx->gcm_tmp;
|
||
|
|
||
|
/* authentication tag */
|
||
|
bzero((uint8_t *)ctx->gcm_tmp, block_size);
|
||
|
bcopy(datap, (uint8_t *)ctx->gcm_tmp, ctx->gcm_remainder_len);
|
||
|
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gcm_impl_get_ops());
|
||
|
|
||
|
/* decrypt remaining ciphertext */
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp);
|
||
|
|
||
|
/* XOR with counter block */
|
||
|
for (i = 0; i < ctx->gcm_remainder_len; i++) {
|
||
|
outp[i] = datap[i] ^ counterp[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ARGSUSED */
|
||
|
int
|
||
|
gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
|
||
|
crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
size_t new_len;
|
||
|
uint8_t *new;
|
||
|
|
||
|
/*
|
||
|
* Copy contiguous ciphertext input blocks to plaintext buffer.
|
||
|
* Ciphertext will be decrypted in the final.
|
||
|
*/
|
||
|
if (length > 0) {
|
||
|
new_len = ctx->gcm_pt_buf_len + length;
|
||
|
new = vmem_alloc(new_len, ctx->gcm_kmflag);
|
||
|
if (new == NULL) {
|
||
|
vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
|
||
|
ctx->gcm_pt_buf = NULL;
|
||
|
return (CRYPTO_HOST_MEMORY);
|
||
|
}
|
||
|
bcopy(ctx->gcm_pt_buf, new, ctx->gcm_pt_buf_len);
|
||
|
vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
|
||
|
ctx->gcm_pt_buf = new;
|
||
|
ctx->gcm_pt_buf_len = new_len;
|
||
|
bcopy(data, &ctx->gcm_pt_buf[ctx->gcm_processed_data_len],
|
||
|
length);
|
||
|
ctx->gcm_processed_data_len += length;
|
||
|
}
|
||
|
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
if (ctx->gcm_use_avx == B_TRUE)
|
||
|
return (gcm_decrypt_final_avx(ctx, out, block_size));
|
||
|
#endif
|
||
|
|
||
|
const gcm_impl_ops_t *gops;
|
||
|
size_t pt_len;
|
||
|
size_t remainder;
|
||
|
uint8_t *ghash;
|
||
|
uint8_t *blockp;
|
||
|
uint8_t *cbp;
|
||
|
uint64_t counter;
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
int processed = 0, rv;
|
||
|
|
||
|
ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len);
|
||
|
|
||
|
gops = gcm_impl_get_ops();
|
||
|
pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
blockp = ctx->gcm_pt_buf;
|
||
|
remainder = pt_len;
|
||
|
while (remainder > 0) {
|
||
|
/* Incomplete last block */
|
||
|
if (remainder < block_size) {
|
||
|
bcopy(blockp, ctx->gcm_remainder, remainder);
|
||
|
ctx->gcm_remainder_len = remainder;
|
||
|
/*
|
||
|
* not expecting anymore ciphertext, just
|
||
|
* compute plaintext for the remaining input
|
||
|
*/
|
||
|
gcm_decrypt_incomplete_block(ctx, block_size,
|
||
|
processed, encrypt_block, xor_block);
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
goto out;
|
||
|
}
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, blockp, ghash, gops);
|
||
|
|
||
|
/*
|
||
|
* Increment counter.
|
||
|
* Counter bits are confined to the bottom 32 bits
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
cbp = (uint8_t *)ctx->gcm_tmp;
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp);
|
||
|
|
||
|
/* XOR with ciphertext */
|
||
|
xor_block(cbp, blockp);
|
||
|
|
||
|
processed += block_size;
|
||
|
blockp += block_size;
|
||
|
remainder -= block_size;
|
||
|
}
|
||
|
out:
|
||
|
ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
|
||
|
GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
|
||
|
(uint8_t *)ctx->gcm_J0);
|
||
|
xor_block((uint8_t *)ctx->gcm_J0, ghash);
|
||
|
|
||
|
/* compare the input authentication tag with what we calculated */
|
||
|
if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
|
||
|
/* They don't match */
|
||
|
return (CRYPTO_INVALID_MAC);
|
||
|
} else {
|
||
|
rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
out->cd_offset += pt_len;
|
||
|
}
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param)
|
||
|
{
|
||
|
size_t tag_len;
|
||
|
|
||
|
/*
|
||
|
* Check the length of the authentication tag (in bits).
|
||
|
*/
|
||
|
tag_len = gcm_param->ulTagBits;
|
||
|
switch (tag_len) {
|
||
|
case 32:
|
||
|
case 64:
|
||
|
case 96:
|
||
|
case 104:
|
||
|
case 112:
|
||
|
case 120:
|
||
|
case 128:
|
||
|
break;
|
||
|
default:
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
}
|
||
|
|
||
|
if (gcm_param->ulIvLen == 0)
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len,
|
||
|
gcm_ctx_t *ctx, size_t block_size,
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
const gcm_impl_ops_t *gops;
|
||
|
uint8_t *cb;
|
||
|
ulong_t remainder = iv_len;
|
||
|
ulong_t processed = 0;
|
||
|
uint8_t *datap, *ghash;
|
||
|
uint64_t len_a_len_c[2];
|
||
|
|
||
|
gops = gcm_impl_get_ops();
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
cb = (uint8_t *)ctx->gcm_cb;
|
||
|
if (iv_len == 12) {
|
||
|
bcopy(iv, cb, 12);
|
||
|
cb[12] = 0;
|
||
|
cb[13] = 0;
|
||
|
cb[14] = 0;
|
||
|
cb[15] = 1;
|
||
|
/* J0 will be used again in the final */
|
||
|
copy_block(cb, (uint8_t *)ctx->gcm_J0);
|
||
|
} else {
|
||
|
/* GHASH the IV */
|
||
|
do {
|
||
|
if (remainder < block_size) {
|
||
|
bzero(cb, block_size);
|
||
|
bcopy(&(iv[processed]), cb, remainder);
|
||
|
datap = (uint8_t *)cb;
|
||
|
remainder = 0;
|
||
|
} else {
|
||
|
datap = (uint8_t *)(&(iv[processed]));
|
||
|
processed += block_size;
|
||
|
remainder -= block_size;
|
||
|
}
|
||
|
GHASH(ctx, datap, ghash, gops);
|
||
|
} while (remainder > 0);
|
||
|
|
||
|
len_a_len_c[0] = 0;
|
||
|
len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len));
|
||
|
GHASH(ctx, len_a_len_c, ctx->gcm_J0, gops);
|
||
|
|
||
|
/* J0 will be used again in the final */
|
||
|
copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
|
||
|
unsigned char *auth_data, size_t auth_data_len, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
const gcm_impl_ops_t *gops;
|
||
|
uint8_t *ghash, *datap, *authp;
|
||
|
size_t remainder, processed;
|
||
|
|
||
|
/* encrypt zero block to get subkey H */
|
||
|
bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H,
|
||
|
(uint8_t *)ctx->gcm_H);
|
||
|
|
||
|
gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
|
||
|
copy_block, xor_block);
|
||
|
|
||
|
gops = gcm_impl_get_ops();
|
||
|
authp = (uint8_t *)ctx->gcm_tmp;
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
bzero(authp, block_size);
|
||
|
bzero(ghash, block_size);
|
||
|
|
||
|
processed = 0;
|
||
|
remainder = auth_data_len;
|
||
|
do {
|
||
|
if (remainder < block_size) {
|
||
|
/*
|
||
|
* There's not a block full of data, pad rest of
|
||
|
* buffer with zero
|
||
|
*/
|
||
|
bzero(authp, block_size);
|
||
|
bcopy(&(auth_data[processed]), authp, remainder);
|
||
|
datap = (uint8_t *)authp;
|
||
|
remainder = 0;
|
||
|
} else {
|
||
|
datap = (uint8_t *)(&(auth_data[processed]));
|
||
|
processed += block_size;
|
||
|
remainder -= block_size;
|
||
|
}
|
||
|
|
||
|
/* add auth data to the hash */
|
||
|
GHASH(ctx, datap, ghash, gops);
|
||
|
|
||
|
} while (remainder > 0);
|
||
|
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The following function is called at encrypt or decrypt init time
|
||
|
* for AES GCM mode.
|
||
|
*
|
||
|
* Init the GCM context struct. Handle the cycle and avx implementations here.
|
||
|
*/
|
||
|
int
|
||
|
gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
int rv;
|
||
|
CK_AES_GCM_PARAMS *gcm_param;
|
||
|
|
||
|
if (param != NULL) {
|
||
|
gcm_param = (CK_AES_GCM_PARAMS *)(void *)param;
|
||
|
|
||
|
if ((rv = gcm_validate_args(gcm_param)) != 0) {
|
||
|
return (rv);
|
||
|
}
|
||
|
|
||
|
gcm_ctx->gcm_tag_len = gcm_param->ulTagBits;
|
||
|
gcm_ctx->gcm_tag_len >>= 3;
|
||
|
gcm_ctx->gcm_processed_data_len = 0;
|
||
|
|
||
|
/* these values are in bits */
|
||
|
gcm_ctx->gcm_len_a_len_c[0]
|
||
|
= htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen));
|
||
|
|
||
|
rv = CRYPTO_SUCCESS;
|
||
|
gcm_ctx->gcm_flags |= GCM_MODE;
|
||
|
} else {
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
}
|
||
|
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
|
||
|
gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
|
||
|
} else {
|
||
|
/*
|
||
|
* Handle the "cycle" implementation by creating avx and
|
||
|
* non-avx contexts alternately.
|
||
|
*/
|
||
|
gcm_ctx->gcm_use_avx = gcm_toggle_avx();
|
||
|
/*
|
||
|
* We don't handle byte swapped key schedules in the avx
|
||
|
* code path.
|
||
|
*/
|
||
|
aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
|
||
|
if (ks->ops->needs_byteswap == B_TRUE) {
|
||
|
gcm_ctx->gcm_use_avx = B_FALSE;
|
||
|
}
|
||
|
/* Use the MOVBE and the BSWAP variants alternately. */
|
||
|
if (gcm_ctx->gcm_use_avx == B_TRUE &&
|
||
|
zfs_movbe_available() == B_TRUE) {
|
||
|
(void) atomic_toggle_boolean_nv(
|
||
|
(volatile boolean_t *)&gcm_avx_can_use_movbe);
|
||
|
}
|
||
|
}
|
||
|
/* Allocate Htab memory as needed. */
|
||
|
if (gcm_ctx->gcm_use_avx == B_TRUE) {
|
||
|
size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx);
|
||
|
|
||
|
if (htab_len == 0) {
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
}
|
||
|
gcm_ctx->gcm_htab_len = htab_len;
|
||
|
gcm_ctx->gcm_Htable =
|
||
|
(uint64_t *)kmem_alloc(htab_len, gcm_ctx->gcm_kmflag);
|
||
|
|
||
|
if (gcm_ctx->gcm_Htable == NULL) {
|
||
|
return (CRYPTO_HOST_MEMORY);
|
||
|
}
|
||
|
}
|
||
|
/* Avx and non avx context initialization differs from here on. */
|
||
|
if (gcm_ctx->gcm_use_avx == B_FALSE) {
|
||
|
#endif /* ifdef CAN_USE_GCM_ASM */
|
||
|
if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
|
||
|
gcm_param->pAAD, gcm_param->ulAADLen, block_size,
|
||
|
encrypt_block, copy_block, xor_block) != 0) {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
}
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
} else {
|
||
|
if (gcm_init_avx(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
|
||
|
gcm_param->pAAD, gcm_param->ulAADLen, block_size) != 0) {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
}
|
||
|
}
|
||
|
#endif /* ifdef CAN_USE_GCM_ASM */
|
||
|
|
||
|
return (rv);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
int rv;
|
||
|
CK_AES_GMAC_PARAMS *gmac_param;
|
||
|
|
||
|
if (param != NULL) {
|
||
|
gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param;
|
||
|
|
||
|
gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS);
|
||
|
gcm_ctx->gcm_processed_data_len = 0;
|
||
|
|
||
|
/* these values are in bits */
|
||
|
gcm_ctx->gcm_len_a_len_c[0]
|
||
|
= htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen));
|
||
|
|
||
|
rv = CRYPTO_SUCCESS;
|
||
|
gcm_ctx->gcm_flags |= GMAC_MODE;
|
||
|
} else {
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
}
|
||
|
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
/*
|
||
|
* Handle the "cycle" implementation by creating avx and non avx
|
||
|
* contexts alternately.
|
||
|
*/
|
||
|
if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
|
||
|
gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
|
||
|
} else {
|
||
|
gcm_ctx->gcm_use_avx = gcm_toggle_avx();
|
||
|
}
|
||
|
/* We don't handle byte swapped key schedules in the avx code path. */
|
||
|
aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
|
||
|
if (ks->ops->needs_byteswap == B_TRUE) {
|
||
|
gcm_ctx->gcm_use_avx = B_FALSE;
|
||
|
}
|
||
|
/* Allocate Htab memory as needed. */
|
||
|
if (gcm_ctx->gcm_use_avx == B_TRUE) {
|
||
|
size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx);
|
||
|
|
||
|
if (htab_len == 0) {
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
}
|
||
|
gcm_ctx->gcm_htab_len = htab_len;
|
||
|
gcm_ctx->gcm_Htable =
|
||
|
(uint64_t *)kmem_alloc(htab_len, gcm_ctx->gcm_kmflag);
|
||
|
|
||
|
if (gcm_ctx->gcm_Htable == NULL) {
|
||
|
return (CRYPTO_HOST_MEMORY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Avx and non avx context initialization differs from here on. */
|
||
|
if (gcm_ctx->gcm_use_avx == B_FALSE) {
|
||
|
#endif /* ifdef CAN_USE_GCM_ASM */
|
||
|
if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
|
||
|
gmac_param->pAAD, gmac_param->ulAADLen, block_size,
|
||
|
encrypt_block, copy_block, xor_block) != 0) {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
}
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
} else {
|
||
|
if (gcm_init_avx(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
|
||
|
gmac_param->pAAD, gmac_param->ulAADLen, block_size) != 0) {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
}
|
||
|
}
|
||
|
#endif /* ifdef CAN_USE_GCM_ASM */
|
||
|
|
||
|
return (rv);
|
||
|
}
|
||
|
|
||
|
void *
|
||
|
gcm_alloc_ctx(int kmflag)
|
||
|
{
|
||
|
gcm_ctx_t *gcm_ctx;
|
||
|
|
||
|
if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
|
||
|
return (NULL);
|
||
|
|
||
|
gcm_ctx->gcm_flags = GCM_MODE;
|
||
|
return (gcm_ctx);
|
||
|
}
|
||
|
|
||
|
void *
|
||
|
gmac_alloc_ctx(int kmflag)
|
||
|
{
|
||
|
gcm_ctx_t *gcm_ctx;
|
||
|
|
||
|
if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
|
||
|
return (NULL);
|
||
|
|
||
|
gcm_ctx->gcm_flags = GMAC_MODE;
|
||
|
return (gcm_ctx);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
gcm_set_kmflag(gcm_ctx_t *ctx, int kmflag)
|
||
|
{
|
||
|
ctx->gcm_kmflag = kmflag;
|
||
|
}
|
||
|
|
||
|
/* GCM implementation that contains the fastest methods */
|
||
|
static gcm_impl_ops_t gcm_fastest_impl = {
|
||
|
.name = "fastest"
|
||
|
};
|
||
|
|
||
|
/* All compiled in implementations */
|
||
|
const gcm_impl_ops_t *gcm_all_impl[] = {
|
||
|
&gcm_generic_impl,
|
||
|
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
|
||
|
&gcm_pclmulqdq_impl,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/* Indicate that benchmark has been completed */
|
||
|
static boolean_t gcm_impl_initialized = B_FALSE;
|
||
|
|
||
|
/* Hold all supported implementations */
|
||
|
static size_t gcm_supp_impl_cnt = 0;
|
||
|
static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)];
|
||
|
|
||
|
/*
|
||
|
* Returns the GCM operations for encrypt/decrypt/key setup. When a
|
||
|
* SIMD implementation is not allowed in the current context, then
|
||
|
* fallback to the fastest generic implementation.
|
||
|
*/
|
||
|
const gcm_impl_ops_t *
|
||
|
gcm_impl_get_ops()
|
||
|
{
|
||
|
if (!kfpu_allowed())
|
||
|
return (&gcm_generic_impl);
|
||
|
|
||
|
const gcm_impl_ops_t *ops = NULL;
|
||
|
const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);
|
||
|
|
||
|
switch (impl) {
|
||
|
case IMPL_FASTEST:
|
||
|
ASSERT(gcm_impl_initialized);
|
||
|
ops = &gcm_fastest_impl;
|
||
|
break;
|
||
|
case IMPL_CYCLE:
|
||
|
/* Cycle through supported implementations */
|
||
|
ASSERT(gcm_impl_initialized);
|
||
|
ASSERT3U(gcm_supp_impl_cnt, >, 0);
|
||
|
static size_t cycle_impl_idx = 0;
|
||
|
size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt;
|
||
|
ops = gcm_supp_impl[idx];
|
||
|
break;
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
case IMPL_AVX:
|
||
|
/*
|
||
|
* Make sure that we return a valid implementation while
|
||
|
* switching to the avx implementation since there still
|
||
|
* may be unfinished non-avx contexts around.
|
||
|
*/
|
||
|
ops = &gcm_generic_impl;
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
ASSERT3U(impl, <, gcm_supp_impl_cnt);
|
||
|
ASSERT3U(gcm_supp_impl_cnt, >, 0);
|
||
|
if (impl < ARRAY_SIZE(gcm_all_impl))
|
||
|
ops = gcm_supp_impl[impl];
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ASSERT3P(ops, !=, NULL);
|
||
|
|
||
|
return (ops);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize all supported implementations.
|
||
|
*/
|
||
|
void
|
||
|
gcm_impl_init(void)
|
||
|
{
|
||
|
gcm_impl_ops_t *curr_impl;
|
||
|
int i, c;
|
||
|
|
||
|
/* Move supported implementations into gcm_supp_impls */
|
||
|
for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) {
|
||
|
curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i];
|
||
|
|
||
|
if (curr_impl->is_supported())
|
||
|
gcm_supp_impl[c++] = (gcm_impl_ops_t *)curr_impl;
|
||
|
}
|
||
|
gcm_supp_impl_cnt = c;
|
||
|
|
||
|
/*
|
||
|
* Set the fastest implementation given the assumption that the
|
||
|
* hardware accelerated version is the fastest.
|
||
|
*/
|
||
|
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
|
||
|
if (gcm_pclmulqdq_impl.is_supported()) {
|
||
|
memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl,
|
||
|
sizeof (gcm_fastest_impl));
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
memcpy(&gcm_fastest_impl, &gcm_generic_impl,
|
||
|
sizeof (gcm_fastest_impl));
|
||
|
}
|
||
|
|
||
|
strlcpy(gcm_fastest_impl.name, "fastest", GCM_IMPL_NAME_MAX);
|
||
|
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
/*
|
||
|
* Use the avx implementation if it's available and the implementation
|
||
|
* hasn't changed from its default value of fastest on module load.
|
||
|
*/
|
||
|
if (gcm_avx_will_work()) {
|
||
|
#ifdef HAVE_MOVBE
|
||
|
if (zfs_movbe_available() == B_TRUE) {
|
||
|
atomic_swap_32(&gcm_avx_can_use_movbe, B_TRUE);
|
||
|
}
|
||
|
#endif
|
||
|
if (GCM_IMPL_READ(user_sel_impl) == IMPL_FASTEST) {
|
||
|
gcm_set_avx(B_TRUE);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
/* Finish initialization */
|
||
|
atomic_swap_32(&icp_gcm_impl, user_sel_impl);
|
||
|
gcm_impl_initialized = B_TRUE;
|
||
|
}
|
||
|
|
||
|
static const struct {
|
||
|
char *name;
|
||
|
uint32_t sel;
|
||
|
} gcm_impl_opts[] = {
|
||
|
{ "cycle", IMPL_CYCLE },
|
||
|
{ "fastest", IMPL_FASTEST },
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
{ "avx", IMPL_AVX },
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Function sets desired gcm implementation.
|
||
|
*
|
||
|
* If we are called before init(), user preference will be saved in
|
||
|
* user_sel_impl, and applied in later init() call. This occurs when module
|
||
|
* parameter is specified on module load. Otherwise, directly update
|
||
|
* icp_gcm_impl.
|
||
|
*
|
||
|
* @val Name of gcm implementation to use
|
||
|
* @param Unused.
|
||
|
*/
|
||
|
int
|
||
|
gcm_impl_set(const char *val)
|
||
|
{
|
||
|
int err = -EINVAL;
|
||
|
char req_name[GCM_IMPL_NAME_MAX];
|
||
|
uint32_t impl = GCM_IMPL_READ(user_sel_impl);
|
||
|
size_t i;
|
||
|
|
||
|
/* sanitize input */
|
||
|
i = strnlen(val, GCM_IMPL_NAME_MAX);
|
||
|
if (i == 0 || i >= GCM_IMPL_NAME_MAX)
|
||
|
return (err);
|
||
|
|
||
|
strlcpy(req_name, val, GCM_IMPL_NAME_MAX);
|
||
|
while (i > 0 && isspace(req_name[i-1]))
|
||
|
i--;
|
||
|
req_name[i] = '\0';
|
||
|
|
||
|
/* Check mandatory options */
|
||
|
for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
/* Ignore avx implementation if it won't work. */
|
||
|
if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
|
||
|
continue;
|
||
|
}
|
||
|
#endif
|
||
|
if (strcmp(req_name, gcm_impl_opts[i].name) == 0) {
|
||
|
impl = gcm_impl_opts[i].sel;
|
||
|
err = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* check all supported impl if init() was already called */
|
||
|
if (err != 0 && gcm_impl_initialized) {
|
||
|
/* check all supported implementations */
|
||
|
for (i = 0; i < gcm_supp_impl_cnt; i++) {
|
||
|
if (strcmp(req_name, gcm_supp_impl[i]->name) == 0) {
|
||
|
impl = i;
|
||
|
err = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
/*
|
||
|
* Use the avx implementation if available and the requested one is
|
||
|
* avx or fastest.
|
||
|
*/
|
||
|
if (gcm_avx_will_work() == B_TRUE &&
|
||
|
(impl == IMPL_AVX || impl == IMPL_FASTEST)) {
|
||
|
gcm_set_avx(B_TRUE);
|
||
|
} else {
|
||
|
gcm_set_avx(B_FALSE);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (err == 0) {
|
||
|
if (gcm_impl_initialized)
|
||
|
atomic_swap_32(&icp_gcm_impl, impl);
|
||
|
else
|
||
|
atomic_swap_32(&user_sel_impl, impl);
|
||
|
}
|
||
|
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
#if defined(_KERNEL) && defined(__linux__)
|
||
|
|
||
|
static int
|
||
|
icp_gcm_impl_set(const char *val, zfs_kernel_param_t *kp)
|
||
|
{
|
||
|
return (gcm_impl_set(val));
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp)
|
||
|
{
|
||
|
int i, cnt = 0;
|
||
|
char *fmt;
|
||
|
const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);
|
||
|
|
||
|
ASSERT(gcm_impl_initialized);
|
||
|
|
||
|
/* list mandatory options */
|
||
|
for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
/* Ignore avx implementation if it won't work. */
|
||
|
if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
|
||
|
continue;
|
||
|
}
|
||
|
#endif
|
||
|
fmt = (impl == gcm_impl_opts[i].sel) ? "[%s] " : "%s ";
|
||
|
cnt += sprintf(buffer + cnt, fmt, gcm_impl_opts[i].name);
|
||
|
}
|
||
|
|
||
|
/* list all supported implementations */
|
||
|
for (i = 0; i < gcm_supp_impl_cnt; i++) {
|
||
|
fmt = (i == impl) ? "[%s] " : "%s ";
|
||
|
cnt += sprintf(buffer + cnt, fmt, gcm_supp_impl[i]->name);
|
||
|
}
|
||
|
|
||
|
return (cnt);
|
||
|
}
|
||
|
|
||
|
module_param_call(icp_gcm_impl, icp_gcm_impl_set, icp_gcm_impl_get,
|
||
|
NULL, 0644);
|
||
|
MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
|
||
|
#endif /* defined(__KERNEL) */
|
||
|
|
||
|
#ifdef CAN_USE_GCM_ASM
|
||
|
#define GCM_BLOCK_LEN 16
|
||
|
/*
|
||
|
* The openssl asm routines are 6x aggregated and need that many bytes
|
||
|
* at minimum.
|
||
|
*/
|
||
|
#define GCM_AVX_MIN_DECRYPT_BYTES (GCM_BLOCK_LEN * 6)
|
||
|
#define GCM_AVX_MIN_ENCRYPT_BYTES (GCM_BLOCK_LEN * 6 * 3)
|
||
|
/*
|
||
|
* Ensure the chunk size is reasonable since we are allocating a
|
||
|
* GCM_AVX_MAX_CHUNK_SIZEd buffer and disabling preemption and interrupts.
|
||
|
*/
|
||
|
#define GCM_AVX_MAX_CHUNK_SIZE \
|
||
|
(((128*1024)/GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES)
|
||
|
|
||
|
/* Get the chunk size module parameter. */
|
||
|
#define GCM_CHUNK_SIZE_READ *(volatile uint32_t *) &gcm_avx_chunk_size
|
||
|
|
||
|
/* Clear the FPU registers since they hold sensitive internal state. */
|
||
|
#define clear_fpu_regs() clear_fpu_regs_avx()
|
||
|
#define GHASH_AVX(ctx, in, len) \
|
||
|
gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t *)(ctx)->gcm_Htable, \
|
||
|
in, len)
|
||
|
|
||
|
#define gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1)
|
||
|
|
||
|
/*
|
||
|
* Module parameter: number of bytes to process at once while owning the FPU.
|
||
|
* Rounded down to the next GCM_AVX_MIN_DECRYPT_BYTES byte boundary and is
|
||
|
* ensured to be greater or equal than GCM_AVX_MIN_DECRYPT_BYTES.
|
||
|
*/
|
||
|
static uint32_t gcm_avx_chunk_size =
|
||
|
((32 * 1024) / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;
|
||
|
|
||
|
extern void clear_fpu_regs_avx(void);
|
||
|
extern void gcm_xor_avx(const uint8_t *src, uint8_t *dst);
|
||
|
extern void aes_encrypt_intel(const uint32_t rk[], int nr,
|
||
|
const uint32_t pt[4], uint32_t ct[4]);
|
||
|
|
||
|
extern void gcm_init_htab_avx(uint64_t *Htable, const uint64_t H[2]);
|
||
|
extern void gcm_ghash_avx(uint64_t ghash[2], const uint64_t *Htable,
|
||
|
const uint8_t *in, size_t len);
|
||
|
|
||
|
extern size_t aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t,
|
||
|
const void *, uint64_t *, uint64_t *);
|
||
|
|
||
|
extern size_t aesni_gcm_decrypt(const uint8_t *, uint8_t *, size_t,
|
||
|
const void *, uint64_t *, uint64_t *);
|
||
|
|
||
|
static inline boolean_t
|
||
|
gcm_avx_will_work(void)
|
||
|
{
|
||
|
/* Avx should imply aes-ni and pclmulqdq, but make sure anyhow. */
|
||
|
return (kfpu_allowed() &&
|
||
|
zfs_avx_available() && zfs_aes_available() &&
|
||
|
zfs_pclmulqdq_available());
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
gcm_set_avx(boolean_t val)
|
||
|
{
|
||
|
if (gcm_avx_will_work() == B_TRUE) {
|
||
|
atomic_swap_32(&gcm_use_avx, val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline boolean_t
|
||
|
gcm_toggle_avx(void)
|
||
|
{
|
||
|
if (gcm_avx_will_work() == B_TRUE) {
|
||
|
return (atomic_toggle_boolean_nv(&GCM_IMPL_USE_AVX));
|
||
|
} else {
|
||
|
return (B_FALSE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline size_t
|
||
|
gcm_simd_get_htab_size(boolean_t simd_mode)
|
||
|
{
|
||
|
switch (simd_mode) {
|
||
|
case B_TRUE:
|
||
|
return (2 * 6 * 2 * sizeof (uint64_t));
|
||
|
|
||
|
default:
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Clear sensitive data in the context.
|
||
|
*
|
||
|
* ctx->gcm_remainder may contain a plaintext remainder. ctx->gcm_H and
|
||
|
* ctx->gcm_Htable contain the hash sub key which protects authentication.
|
||
|
*
|
||
|
* Although extremely unlikely, ctx->gcm_J0 and ctx->gcm_tmp could be used for
|
||
|
* a known plaintext attack, they consists of the IV and the first and last
|
||
|
* counter respectively. If they should be cleared is debatable.
|
||
|
*/
|
||
|
static inline void
|
||
|
gcm_clear_ctx(gcm_ctx_t *ctx)
|
||
|
{
|
||
|
bzero(ctx->gcm_remainder, sizeof (ctx->gcm_remainder));
|
||
|
bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
|
||
|
bzero(ctx->gcm_J0, sizeof (ctx->gcm_J0));
|
||
|
bzero(ctx->gcm_tmp, sizeof (ctx->gcm_tmp));
|
||
|
}
|
||
|
|
||
|
/* Increment the GCM counter block by n. */
|
||
|
static inline void
|
||
|
gcm_incr_counter_block_by(gcm_ctx_t *ctx, int n)
|
||
|
{
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
uint64_t counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
|
||
|
counter = htonll(counter + n);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Encrypt multiple blocks of data in GCM mode.
|
||
|
* This is done in gcm_avx_chunk_size chunks, utilizing AVX assembler routines
|
||
|
* if possible. While processing a chunk the FPU is "locked".
|
||
|
*/
|
||
|
static int
|
||
|
gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data,
|
||
|
size_t length, crypto_data_t *out, size_t block_size)
|
||
|
{
|
||
|
size_t bleft = length;
|
||
|
size_t need = 0;
|
||
|
size_t done = 0;
|
||
|
uint8_t *datap = (uint8_t *)data;
|
||
|
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
|
||
|
const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
|
||
|
uint64_t *ghash = ctx->gcm_ghash;
|
||
|
uint64_t *cb = ctx->gcm_cb;
|
||
|
uint8_t *ct_buf = NULL;
|
||
|
uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
|
||
|
int rv = CRYPTO_SUCCESS;
|
||
|
|
||
|
ASSERT(block_size == GCM_BLOCK_LEN);
|
||
|
/*
|
||
|
* If the last call left an incomplete block, try to fill
|
||
|
* it first.
|
||
|
*/
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
need = block_size - ctx->gcm_remainder_len;
|
||
|
if (length < need) {
|
||
|
/* Accumulate bytes here and return. */
|
||
|
bcopy(datap, (uint8_t *)ctx->gcm_remainder +
|
||
|
ctx->gcm_remainder_len, length);
|
||
|
|
||
|
ctx->gcm_remainder_len += length;
|
||
|
if (ctx->gcm_copy_to == NULL) {
|
||
|
ctx->gcm_copy_to = datap;
|
||
|
}
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
} else {
|
||
|
/* Complete incomplete block. */
|
||
|
bcopy(datap, (uint8_t *)ctx->gcm_remainder +
|
||
|
ctx->gcm_remainder_len, need);
|
||
|
|
||
|
ctx->gcm_copy_to = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Allocate a buffer to encrypt to if there is enough input. */
|
||
|
if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
|
||
|
ct_buf = vmem_alloc(chunk_size, ctx->gcm_kmflag);
|
||
|
if (ct_buf == NULL) {
|
||
|
return (CRYPTO_HOST_MEMORY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If we completed an incomplete block, encrypt and write it out. */
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
kfpu_begin();
|
||
|
aes_encrypt_intel(key->encr_ks.ks32, key->nr,
|
||
|
(const uint32_t *)cb, (uint32_t *)tmp);
|
||
|
|
||
|
gcm_xor_avx((const uint8_t *) ctx->gcm_remainder, tmp);
|
||
|
GHASH_AVX(ctx, tmp, block_size);
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
rv = crypto_put_output_data(tmp, out, block_size);
|
||
|
out->cd_offset += block_size;
|
||
|
gcm_incr_counter_block(ctx);
|
||
|
ctx->gcm_processed_data_len += block_size;
|
||
|
bleft -= need;
|
||
|
datap += need;
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
}
|
||
|
|
||
|
/* Do the bulk encryption in chunk_size blocks. */
|
||
|
for (; bleft >= chunk_size; bleft -= chunk_size) {
|
||
|
kfpu_begin();
|
||
|
done = aesni_gcm_encrypt(
|
||
|
datap, ct_buf, chunk_size, key, cb, ghash);
|
||
|
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
if (done != chunk_size) {
|
||
|
rv = CRYPTO_FAILED;
|
||
|
goto out_nofpu;
|
||
|
}
|
||
|
rv = crypto_put_output_data(ct_buf, out, chunk_size);
|
||
|
if (rv != CRYPTO_SUCCESS) {
|
||
|
goto out_nofpu;
|
||
|
}
|
||
|
out->cd_offset += chunk_size;
|
||
|
datap += chunk_size;
|
||
|
ctx->gcm_processed_data_len += chunk_size;
|
||
|
}
|
||
|
/* Check if we are already done. */
|
||
|
if (bleft == 0) {
|
||
|
goto out_nofpu;
|
||
|
}
|
||
|
/* Bulk encrypt the remaining data. */
|
||
|
kfpu_begin();
|
||
|
if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
|
||
|
done = aesni_gcm_encrypt(datap, ct_buf, bleft, key, cb, ghash);
|
||
|
if (done == 0) {
|
||
|
rv = CRYPTO_FAILED;
|
||
|
goto out;
|
||
|
}
|
||
|
rv = crypto_put_output_data(ct_buf, out, done);
|
||
|
if (rv != CRYPTO_SUCCESS) {
|
||
|
goto out;
|
||
|
}
|
||
|
out->cd_offset += done;
|
||
|
ctx->gcm_processed_data_len += done;
|
||
|
datap += done;
|
||
|
bleft -= done;
|
||
|
|
||
|
}
|
||
|
/* Less than GCM_AVX_MIN_ENCRYPT_BYTES remain, operate on blocks. */
|
||
|
while (bleft > 0) {
|
||
|
if (bleft < block_size) {
|
||
|
bcopy(datap, ctx->gcm_remainder, bleft);
|
||
|
ctx->gcm_remainder_len = bleft;
|
||
|
ctx->gcm_copy_to = datap;
|
||
|
goto out;
|
||
|
}
|
||
|
/* Encrypt, hash and write out. */
|
||
|
aes_encrypt_intel(key->encr_ks.ks32, key->nr,
|
||
|
(const uint32_t *)cb, (uint32_t *)tmp);
|
||
|
|
||
|
gcm_xor_avx(datap, tmp);
|
||
|
GHASH_AVX(ctx, tmp, block_size);
|
||
|
rv = crypto_put_output_data(tmp, out, block_size);
|
||
|
if (rv != CRYPTO_SUCCESS) {
|
||
|
goto out;
|
||
|
}
|
||
|
out->cd_offset += block_size;
|
||
|
gcm_incr_counter_block(ctx);
|
||
|
ctx->gcm_processed_data_len += block_size;
|
||
|
datap += block_size;
|
||
|
bleft -= block_size;
|
||
|
}
|
||
|
out:
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
out_nofpu:
|
||
|
if (ct_buf != NULL) {
|
||
|
vmem_free(ct_buf, chunk_size);
|
||
|
}
|
||
|
return (rv);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Finalize the encryption: Zero fill, encrypt, hash and write out an eventual
|
||
|
* incomplete last block. Encrypt the ICB. Calculate the tag and write it out.
|
||
|
*/
|
||
|
static int
|
||
|
gcm_encrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
|
||
|
{
|
||
|
uint8_t *ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
uint32_t *J0 = (uint32_t *)ctx->gcm_J0;
|
||
|
uint8_t *remainder = (uint8_t *)ctx->gcm_remainder;
|
||
|
size_t rem_len = ctx->gcm_remainder_len;
|
||
|
const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
|
||
|
int aes_rounds = ((aes_key_t *)keysched)->nr;
|
||
|
int rv;
|
||
|
|
||
|
ASSERT(block_size == GCM_BLOCK_LEN);
|
||
|
|
||
|
if (out->cd_length < (rem_len + ctx->gcm_tag_len)) {
|
||
|
return (CRYPTO_DATA_LEN_RANGE);
|
||
|
}
|
||
|
|
||
|
kfpu_begin();
|
||
|
/* Pad last incomplete block with zeros, encrypt and hash. */
|
||
|
if (rem_len > 0) {
|
||
|
uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
|
||
|
const uint32_t *cb = (uint32_t *)ctx->gcm_cb;
|
||
|
|
||
|
aes_encrypt_intel(keysched, aes_rounds, cb, (uint32_t *)tmp);
|
||
|
bzero(remainder + rem_len, block_size - rem_len);
|
||
|
for (int i = 0; i < rem_len; i++) {
|
||
|
remainder[i] ^= tmp[i];
|
||
|
}
|
||
|
GHASH_AVX(ctx, remainder, block_size);
|
||
|
ctx->gcm_processed_data_len += rem_len;
|
||
|
/* No need to increment counter_block, it's the last block. */
|
||
|
}
|
||
|
/* Finish tag. */
|
||
|
ctx->gcm_len_a_len_c[1] =
|
||
|
htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
|
||
|
GHASH_AVX(ctx, (const uint8_t *)ctx->gcm_len_a_len_c, block_size);
|
||
|
aes_encrypt_intel(keysched, aes_rounds, J0, J0);
|
||
|
|
||
|
gcm_xor_avx((uint8_t *)J0, ghash);
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
|
||
|
/* Output remainder. */
|
||
|
if (rem_len > 0) {
|
||
|
rv = crypto_put_output_data(remainder, out, rem_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
}
|
||
|
out->cd_offset += rem_len;
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
|
||
|
out->cd_offset += ctx->gcm_tag_len;
|
||
|
/* Clear sensitive data in the context before returning. */
|
||
|
gcm_clear_ctx(ctx);
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Finalize decryption: We just have accumulated crypto text, so now we
|
||
|
* decrypt it here inplace.
|
||
|
*/
|
||
|
static int
|
||
|
gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
|
||
|
{
|
||
|
ASSERT3U(ctx->gcm_processed_data_len, ==, ctx->gcm_pt_buf_len);
|
||
|
ASSERT3U(block_size, ==, 16);
|
||
|
|
||
|
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
|
||
|
size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
|
||
|
uint8_t *datap = ctx->gcm_pt_buf;
|
||
|
const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
|
||
|
uint32_t *cb = (uint32_t *)ctx->gcm_cb;
|
||
|
uint64_t *ghash = ctx->gcm_ghash;
|
||
|
uint32_t *tmp = (uint32_t *)ctx->gcm_tmp;
|
||
|
int rv = CRYPTO_SUCCESS;
|
||
|
size_t bleft, done;
|
||
|
|
||
|
/*
|
||
|
* Decrypt in chunks of gcm_avx_chunk_size, which is asserted to be
|
||
|
* greater or equal than GCM_AVX_MIN_ENCRYPT_BYTES, and a multiple of
|
||
|
* GCM_AVX_MIN_DECRYPT_BYTES.
|
||
|
*/
|
||
|
for (bleft = pt_len; bleft >= chunk_size; bleft -= chunk_size) {
|
||
|
kfpu_begin();
|
||
|
done = aesni_gcm_decrypt(datap, datap, chunk_size,
|
||
|
(const void *)key, ctx->gcm_cb, ghash);
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
if (done != chunk_size) {
|
||
|
return (CRYPTO_FAILED);
|
||
|
}
|
||
|
datap += done;
|
||
|
}
|
||
|
/* Decrypt remainder, which is less then chunk size, in one go. */
|
||
|
kfpu_begin();
|
||
|
if (bleft >= GCM_AVX_MIN_DECRYPT_BYTES) {
|
||
|
done = aesni_gcm_decrypt(datap, datap, bleft,
|
||
|
(const void *)key, ctx->gcm_cb, ghash);
|
||
|
if (done == 0) {
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
return (CRYPTO_FAILED);
|
||
|
}
|
||
|
datap += done;
|
||
|
bleft -= done;
|
||
|
}
|
||
|
ASSERT(bleft < GCM_AVX_MIN_DECRYPT_BYTES);
|
||
|
|
||
|
/*
|
||
|
* Now less then GCM_AVX_MIN_DECRYPT_BYTES bytes remain,
|
||
|
* decrypt them block by block.
|
||
|
*/
|
||
|
while (bleft > 0) {
|
||
|
/* Incomplete last block. */
|
||
|
if (bleft < block_size) {
|
||
|
uint8_t *lastb = (uint8_t *)ctx->gcm_remainder;
|
||
|
|
||
|
bzero(lastb, block_size);
|
||
|
bcopy(datap, lastb, bleft);
|
||
|
/* The GCM processing. */
|
||
|
GHASH_AVX(ctx, lastb, block_size);
|
||
|
aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
|
||
|
for (size_t i = 0; i < bleft; i++) {
|
||
|
datap[i] = lastb[i] ^ ((uint8_t *)tmp)[i];
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
/* The GCM processing. */
|
||
|
GHASH_AVX(ctx, datap, block_size);
|
||
|
aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
|
||
|
gcm_xor_avx((uint8_t *)tmp, datap);
|
||
|
gcm_incr_counter_block(ctx);
|
||
|
|
||
|
datap += block_size;
|
||
|
bleft -= block_size;
|
||
|
}
|
||
|
if (rv != CRYPTO_SUCCESS) {
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
return (rv);
|
||
|
}
|
||
|
/* Decryption done, finish the tag. */
|
||
|
ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
|
||
|
GHASH_AVX(ctx, (uint8_t *)ctx->gcm_len_a_len_c, block_size);
|
||
|
aes_encrypt_intel(key->encr_ks.ks32, key->nr, (uint32_t *)ctx->gcm_J0,
|
||
|
(uint32_t *)ctx->gcm_J0);
|
||
|
|
||
|
gcm_xor_avx((uint8_t *)ctx->gcm_J0, (uint8_t *)ghash);
|
||
|
|
||
|
/* We are done with the FPU, restore its state. */
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
|
||
|
/* Compare the input authentication tag with what we calculated. */
|
||
|
if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
|
||
|
/* They don't match. */
|
||
|
return (CRYPTO_INVALID_MAC);
|
||
|
}
|
||
|
rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
|
||
|
if (rv != CRYPTO_SUCCESS) {
|
||
|
return (rv);
|
||
|
}
|
||
|
out->cd_offset += pt_len;
|
||
|
gcm_clear_ctx(ctx);
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the GCM params H, Htabtle and the counter block. Save the
|
||
|
* initial counter block.
|
||
|
*/
|
||
|
static int
|
||
|
gcm_init_avx(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
|
||
|
unsigned char *auth_data, size_t auth_data_len, size_t block_size)
|
||
|
{
|
||
|
uint8_t *cb = (uint8_t *)ctx->gcm_cb;
|
||
|
uint64_t *H = ctx->gcm_H;
|
||
|
const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
|
||
|
int aes_rounds = ((aes_key_t *)ctx->gcm_keysched)->nr;
|
||
|
uint8_t *datap = auth_data;
|
||
|
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
|
||
|
size_t bleft;
|
||
|
|
||
|
ASSERT(block_size == GCM_BLOCK_LEN);
|
||
|
|
||
|
/* Init H (encrypt zero block) and create the initial counter block. */
|
||
|
bzero(ctx->gcm_ghash, sizeof (ctx->gcm_ghash));
|
||
|
bzero(H, sizeof (ctx->gcm_H));
|
||
|
kfpu_begin();
|
||
|
aes_encrypt_intel(keysched, aes_rounds,
|
||
|
(const uint32_t *)H, (uint32_t *)H);
|
||
|
|
||
|
gcm_init_htab_avx(ctx->gcm_Htable, H);
|
||
|
|
||
|
if (iv_len == 12) {
|
||
|
bcopy(iv, cb, 12);
|
||
|
cb[12] = 0;
|
||
|
cb[13] = 0;
|
||
|
cb[14] = 0;
|
||
|
cb[15] = 1;
|
||
|
/* We need the ICB later. */
|
||
|
bcopy(cb, ctx->gcm_J0, sizeof (ctx->gcm_J0));
|
||
|
} else {
|
||
|
/*
|
||
|
* Most consumers use 12 byte IVs, so it's OK to use the
|
||
|
* original routines for other IV sizes, just avoid nesting
|
||
|
* kfpu_begin calls.
|
||
|
*/
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
|
||
|
aes_copy_block, aes_xor_block);
|
||
|
kfpu_begin();
|
||
|
}
|
||
|
|
||
|
/* Openssl post increments the counter, adjust for that. */
|
||
|
gcm_incr_counter_block(ctx);
|
||
|
|
||
|
/* Ghash AAD in chunk_size blocks. */
|
||
|
for (bleft = auth_data_len; bleft >= chunk_size; bleft -= chunk_size) {
|
||
|
GHASH_AVX(ctx, datap, chunk_size);
|
||
|
datap += chunk_size;
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
kfpu_begin();
|
||
|
}
|
||
|
/* Ghash the remainder and handle possible incomplete GCM block. */
|
||
|
if (bleft > 0) {
|
||
|
size_t incomp = bleft % block_size;
|
||
|
|
||
|
bleft -= incomp;
|
||
|
if (bleft > 0) {
|
||
|
GHASH_AVX(ctx, datap, bleft);
|
||
|
datap += bleft;
|
||
|
}
|
||
|
if (incomp > 0) {
|
||
|
/* Zero pad and hash incomplete last block. */
|
||
|
uint8_t *authp = (uint8_t *)ctx->gcm_tmp;
|
||
|
|
||
|
bzero(authp, block_size);
|
||
|
bcopy(datap, authp, incomp);
|
||
|
GHASH_AVX(ctx, authp, block_size);
|
||
|
}
|
||
|
}
|
||
|
clear_fpu_regs();
|
||
|
kfpu_end();
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
#if defined(_KERNEL)
|
||
|
static int
|
||
|
icp_gcm_avx_set_chunk_size(const char *buf, zfs_kernel_param_t *kp)
|
||
|
{
|
||
|
unsigned long val;
|
||
|
char val_rounded[16];
|
||
|
int error = 0;
|
||
|
|
||
|
error = kstrtoul(buf, 0, &val);
|
||
|
if (error)
|
||
|
return (error);
|
||
|
|
||
|
val = (val / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;
|
||
|
|
||
|
if (val < GCM_AVX_MIN_ENCRYPT_BYTES || val > GCM_AVX_MAX_CHUNK_SIZE)
|
||
|
return (-EINVAL);
|
||
|
|
||
|
snprintf(val_rounded, 16, "%u", (uint32_t)val);
|
||
|
error = param_set_uint(val_rounded, kp);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
module_param_call(icp_gcm_avx_chunk_size, icp_gcm_avx_set_chunk_size,
|
||
|
param_get_uint, &gcm_avx_chunk_size, 0644);
|
||
|
|
||
|
MODULE_PARM_DESC(icp_gcm_avx_chunk_size,
|
||
|
"How many bytes to process while owning the FPU");
|
||
|
|
||
|
#endif /* defined(__KERNEL) */
|
||
|
#endif /* ifdef CAN_USE_GCM_ASM */
|