zfs-builds-mm/zfs-2.0.0-rc6/module/zfs/dmu_redact.c

1200 lines
37 KiB
C
Raw Normal View History

2020-11-15 11:35:49 +01:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2017, 2018 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/txg.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dmu_redact.h>
#include <sys/bqueue.h>
#include <sys/objlist.h>
#include <sys/dmu_tx.h>
#ifdef _KERNEL
#include <sys/zfs_vfsops.h>
#include <sys/zap.h>
#include <sys/zfs_znode.h>
#endif
/*
* This controls the number of entries in the buffer the redaction_list_update
* synctask uses to buffer writes to the redaction list.
*/
int redact_sync_bufsize = 1024;
/*
* Controls how often to update the redaction list when creating a redaction
* list.
*/
uint64_t redaction_list_update_interval_ns = 1000 * 1000 * 1000ULL; /* NS */
/*
* This tunable controls the length of the queues that zfs redact worker threads
* use to communicate. If the dmu_redact_snap thread is blocking on these
* queues, this variable may need to be increased. If there is a significant
* slowdown at the start of a redact operation as these threads consume all the
* available IO resources, or the queues are consuming too much memory, this
* variable may need to be decreased.
*/
int zfs_redact_queue_length = 1024 * 1024;
/*
* These tunables control the fill fraction of the queues by zfs redact. The
* fill fraction controls the frequency with which threads have to be
* cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
* should be tuned down. If the queues empty before the signalled thread can
* catch up, then these should be tuned up.
*/
uint64_t zfs_redact_queue_ff = 20;
struct redact_record {
bqueue_node_t ln;
boolean_t eos_marker; /* Marks the end of the stream */
uint64_t start_object;
uint64_t start_blkid;
uint64_t end_object;
uint64_t end_blkid;
uint8_t indblkshift;
uint32_t datablksz;
};
struct redact_thread_arg {
bqueue_t q;
objset_t *os; /* Objset to traverse */
dsl_dataset_t *ds; /* Dataset to traverse */
struct redact_record *current_record;
int error_code;
boolean_t cancel;
zbookmark_phys_t resume;
objlist_t *deleted_objs;
uint64_t *num_blocks_visited;
uint64_t ignore_object; /* ignore further callbacks on this */
uint64_t txg; /* txg to traverse since */
};
/*
* The redaction node is a wrapper around the redaction record that is used
* by the redaction merging thread to sort the records and determine overlaps.
*
* It contains two nodes; one sorts the records by their start_zb, and the other
* sorts the records by their end_zb.
*/
struct redact_node {
avl_node_t avl_node_start;
avl_node_t avl_node_end;
struct redact_record *record;
struct redact_thread_arg *rt_arg;
uint32_t thread_num;
};
struct merge_data {
list_t md_redact_block_pending;
redact_block_phys_t md_coalesce_block;
uint64_t md_last_time;
redact_block_phys_t md_furthest[TXG_SIZE];
/* Lists of struct redact_block_list_node. */
list_t md_blocks[TXG_SIZE];
boolean_t md_synctask_txg[TXG_SIZE];
uint64_t md_latest_synctask_txg;
redaction_list_t *md_redaction_list;
};
/*
* A wrapper around struct redact_block so it can be stored in a list_t.
*/
struct redact_block_list_node {
redact_block_phys_t block;
list_node_t node;
};
/*
* We've found a new redaction candidate. In order to improve performance, we
* coalesce these blocks when they're adjacent to each other. This function
* handles that. If the new candidate block range is immediately after the
* range we're building, coalesce it into the range we're building. Otherwise,
* put the record we're building on the queue, and update the build pointer to
* point to the new record.
*/
static void
record_merge_enqueue(bqueue_t *q, struct redact_record **build,
struct redact_record *new)
{
if (new->eos_marker) {
if (*build != NULL)
bqueue_enqueue(q, *build, sizeof (*build));
bqueue_enqueue_flush(q, new, sizeof (*new));
return;
}
if (*build == NULL) {
*build = new;
return;
}
struct redact_record *curbuild = *build;
if ((curbuild->end_object == new->start_object &&
curbuild->end_blkid + 1 == new->start_blkid &&
curbuild->end_blkid != UINT64_MAX) ||
(curbuild->end_object + 1 == new->start_object &&
curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
curbuild->end_object = new->end_object;
curbuild->end_blkid = new->end_blkid;
kmem_free(new, sizeof (*new));
} else {
bqueue_enqueue(q, curbuild, sizeof (*curbuild));
*build = new;
}
}
#ifdef _KERNEL
struct objnode {
avl_node_t node;
uint64_t obj;
};
static int
objnode_compare(const void *o1, const void *o2)
{
const struct objnode *obj1 = o1;
const struct objnode *obj2 = o2;
if (obj1->obj < obj2->obj)
return (-1);
if (obj1->obj > obj2->obj)
return (1);
return (0);
}
static objlist_t *
zfs_get_deleteq(objset_t *os)
{
objlist_t *deleteq_objlist = objlist_create();
uint64_t deleteq_obj;
zap_cursor_t zc;
zap_attribute_t za;
dmu_object_info_t doi;
ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
/*
* In order to insert objects into the objlist, they must be in sorted
* order. We don't know what order we'll get them out of the ZAP in, so
* we insert them into and remove them from an avl_tree_t to sort them.
*/
avl_tree_t at;
avl_create(&at, objnode_compare, sizeof (struct objnode),
offsetof(struct objnode, node));
for (zap_cursor_init(&zc, os, deleteq_obj);
zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) {
struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
obj->obj = za.za_first_integer;
avl_add(&at, obj);
}
zap_cursor_fini(&zc);
struct objnode *next, *found = avl_first(&at);
while (found != NULL) {
next = AVL_NEXT(&at, found);
objlist_insert(deleteq_objlist, found->obj);
found = next;
}
void *cookie = NULL;
while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
kmem_free(found, sizeof (*found));
avl_destroy(&at);
return (deleteq_objlist);
}
#endif
/*
* This is the callback function to traverse_dataset for the redaction threads
* for dmu_redact_snap. This thread is responsible for creating redaction
* records for all the data that is modified by the snapshots we're redacting
* with respect to. Redaction records represent ranges of data that have been
* modified by one of the redaction snapshots, and are stored in the
* redact_record struct. We need to create redaction records for three
* cases:
*
* First, if there's a normal write, we need to create a redaction record for
* that block.
*
* Second, if there's a hole, we need to create a redaction record that covers
* the whole range of the hole. If the hole is in the meta-dnode, it must cover
* every block in all of the objects in the hole.
*
* Third, if there is a deleted object, we need to create a redaction record for
* all of the blocks in that object.
*/
/*ARGSUSED*/
static int
redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
{
struct redact_thread_arg *rta = arg;
struct redact_record *record;
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
zb->zb_object >= rta->resume.zb_object);
if (rta->cancel)
return (SET_ERROR(EINTR));
if (rta->ignore_object == zb->zb_object)
return (0);
/*
* If we're visiting a dnode, we need to handle the case where the
* object has been deleted.
*/
if (zb->zb_level == ZB_DNODE_LEVEL) {
ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
if (zb->zb_object == 0)
return (0);
/*
* If the object has been deleted, redact all of the blocks in
* it.
*/
if (dnp->dn_type == DMU_OT_NONE ||
objlist_exists(rta->deleted_objs, zb->zb_object)) {
rta->ignore_object = zb->zb_object;
record = kmem_zalloc(sizeof (struct redact_record),
KM_SLEEP);
record->eos_marker = B_FALSE;
record->start_object = record->end_object =
zb->zb_object;
record->start_blkid = 0;
record->end_blkid = UINT64_MAX;
record_merge_enqueue(&rta->q,
&rta->current_record, record);
}
return (0);
} else if (zb->zb_level < 0) {
return (0);
} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
/*
* If this is an indirect block, but not a hole, it doesn't
* provide any useful information for redaction, so ignore it.
*/
return (0);
}
/*
* At this point, there are two options left for the type of block we're
* looking at. Either this is a hole (which could be in the dnode or
* the meta-dnode), or it's a level 0 block of some sort. If it's a
* hole, we create a redaction record that covers the whole range. If
* the hole is in a dnode, we need to redact all the blocks in that
* hole. If the hole is in the meta-dnode, we instead need to redact
* all blocks in every object covered by that hole. If it's a level 0
* block, we only need to redact that single block.
*/
record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
record->eos_marker = B_FALSE;
record->start_object = record->end_object = zb->zb_object;
if (BP_IS_HOLE(bp)) {
record->start_blkid = zb->zb_blkid *
bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
record->end_blkid = ((zb->zb_blkid + 1) *
bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
if (zb->zb_object == DMU_META_DNODE_OBJECT) {
record->start_object = record->start_blkid *
((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
sizeof (dnode_phys_t));
record->start_blkid = 0;
record->end_object = ((record->end_blkid +
1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
sizeof (dnode_phys_t))) - 1;
record->end_blkid = UINT64_MAX;
}
} else if (zb->zb_level != 0 ||
zb->zb_object == DMU_META_DNODE_OBJECT) {
kmem_free(record, sizeof (*record));
return (0);
} else {
record->start_blkid = record->end_blkid = zb->zb_blkid;
}
record->indblkshift = dnp->dn_indblkshift;
record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
record_merge_enqueue(&rta->q, &rta->current_record, record);
return (0);
}
static void
redact_traverse_thread(void *arg)
{
struct redact_thread_arg *rt_arg = arg;
int err;
struct redact_record *data;
#ifdef _KERNEL
if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
else
rt_arg->deleted_objs = objlist_create();
#else
rt_arg->deleted_objs = objlist_create();
#endif
err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
&rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
redact_cb, rt_arg);
if (err != EINTR)
rt_arg->error_code = err;
objlist_destroy(rt_arg->deleted_objs);
data = kmem_zalloc(sizeof (*data), KM_SLEEP);
data->eos_marker = B_TRUE;
record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
thread_exit();
}
static inline void
create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
uint64_t blkid)
{
zb->zb_object = object;
zb->zb_level = 0;
zb->zb_blkid = blkid;
}
/*
* This is a utility function that can do the comparison for the start or ends
* of the ranges in a redact_record.
*/
static int
redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
uint64_t obj2, uint64_t off2, uint32_t dbss2)
{
zbookmark_phys_t z1, z2;
create_zbookmark_from_obj_off(&z1, obj1, off1);
create_zbookmark_from_obj_off(&z2, obj2, off2);
return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
}
/*
* Compare two redaction records by their range's start location. Also makes
* eos records always compare last. We use the thread number in the redact_node
* to ensure that records do not compare equal (which is not allowed in our avl
* trees).
*/
static int
redact_node_compare_start(const void *arg1, const void *arg2)
{
const struct redact_node *rn1 = arg1;
const struct redact_node *rn2 = arg2;
const struct redact_record *rr1 = rn1->record;
const struct redact_record *rr2 = rn2->record;
if (rr1->eos_marker)
return (1);
if (rr2->eos_marker)
return (-1);
int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
rr1->datablksz, rr2->start_object, rr2->start_blkid,
rr2->datablksz);
if (cmp == 0)
cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
return (cmp);
}
/*
* Compare two redaction records by their range's end location. Also makes
* eos records always compare last. We use the thread number in the redact_node
* to ensure that records do not compare equal (which is not allowed in our avl
* trees).
*/
static int
redact_node_compare_end(const void *arg1, const void *arg2)
{
const struct redact_node *rn1 = arg1;
const struct redact_node *rn2 = arg2;
const struct redact_record *srr1 = rn1->record;
const struct redact_record *srr2 = rn2->record;
if (srr1->eos_marker)
return (1);
if (srr2->eos_marker)
return (-1);
int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
srr1->datablksz, srr2->end_object, srr2->end_blkid,
srr2->datablksz);
if (cmp == 0)
cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
return (cmp);
}
/*
* Utility function that compares two redaction records to determine if any part
* of the "from" record is before any part of the "to" record. Also causes End
* of Stream redaction records to compare after all others, so that the
* redaction merging logic can stay simple.
*/
static boolean_t
redact_record_before(const struct redact_record *from,
const struct redact_record *to)
{
if (from->eos_marker == B_TRUE)
return (B_FALSE);
else if (to->eos_marker == B_TRUE)
return (B_TRUE);
return (redact_range_compare(from->start_object, from->start_blkid,
from->datablksz, to->end_object, to->end_blkid,
to->datablksz) <= 0);
}
/*
* Pop a new redaction record off the queue, check that the records are in the
* right order, and free the old data.
*/
static struct redact_record *
get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
{
struct redact_record *next = bqueue_dequeue(bq);
ASSERT(redact_record_before(prev, next));
kmem_free(prev, sizeof (*prev));
return (next);
}
/*
* Remove the given redaction node from both trees, pull a new redaction record
* off the queue, free the old redaction record, update the redaction node, and
* reinsert the node into the trees.
*/
static int
update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
struct redact_node *redact_node)
{
avl_remove(start_tree, redact_node);
avl_remove(end_tree, redact_node);
redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
redact_node->record);
avl_add(end_tree, redact_node);
avl_add(start_tree, redact_node);
return (redact_node->rt_arg->error_code);
}
/*
* Synctask for updating redaction lists. We first take this txg's list of
* redacted blocks and append those to the redaction list. We then update the
* redaction list's bonus buffer. We store the furthest blocks we visited and
* the list of snapshots that we're redacting with respect to. We need these so
* that redacted sends and receives can be correctly resumed.
*/
static void
redaction_list_update_sync(void *arg, dmu_tx_t *tx)
{
struct merge_data *md = arg;
uint64_t txg = dmu_tx_get_txg(tx);
list_t *list = &md->md_blocks[txg & TXG_MASK];
redact_block_phys_t *furthest_visited =
&md->md_furthest[txg & TXG_MASK];
objset_t *mos = tx->tx_pool->dp_meta_objset;
redaction_list_t *rl = md->md_redaction_list;
int bufsize = redact_sync_bufsize;
redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
KM_SLEEP);
int index = 0;
dmu_buf_will_dirty(rl->rl_dbuf, tx);
for (struct redact_block_list_node *rbln = list_remove_head(list);
rbln != NULL; rbln = list_remove_head(list)) {
ASSERT3U(rbln->block.rbp_object, <=,
furthest_visited->rbp_object);
ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
buf[index] = rbln->block;
index++;
if (index == bufsize) {
dmu_write(mos, rl->rl_object,
rl->rl_phys->rlp_num_entries * sizeof (*buf),
bufsize * sizeof (*buf), buf, tx);
rl->rl_phys->rlp_num_entries += bufsize;
index = 0;
}
kmem_free(rbln, sizeof (*rbln));
}
if (index > 0) {
dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
sizeof (*buf), index * sizeof (*buf), buf, tx);
rl->rl_phys->rlp_num_entries += index;
}
kmem_free(buf, bufsize * sizeof (*buf));
md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
}
static void
commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
uint64_t blkid)
{
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
uint64_t txg = dmu_tx_get_txg(tx);
if (!md->md_synctask_txg[txg & TXG_MASK]) {
dsl_sync_task_nowait(dmu_tx_pool(tx),
redaction_list_update_sync, md, tx);
md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
md->md_latest_synctask_txg = txg;
}
md->md_furthest[txg & TXG_MASK].rbp_object = object;
md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
list_move_tail(&md->md_blocks[txg & TXG_MASK],
&md->md_redact_block_pending);
dmu_tx_commit(tx);
md->md_last_time = gethrtime();
}
/*
* We want to store the list of blocks that we're redacting in the bookmark's
* redaction list. However, this list is stored in the MOS, which means it can
* only be written to in syncing context. To get around this, we create a
* synctask that will write to the mos for us. We tell it what to write by
* a linked list for each current transaction group; every time we decide to
* redact a block, we append it to the transaction group that is currently in
* open context. We also update some progress information that the synctask
* will store to enable resumable redacted sends.
*/
static void
update_redaction_list(struct merge_data *md, objset_t *os,
uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
{
boolean_t enqueue = B_FALSE;
redact_block_phys_t cur = {0};
uint64_t count = endblkid - blkid + 1;
while (count > REDACT_BLOCK_MAX_COUNT) {
update_redaction_list(md, os, object, blkid,
blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
blkid += REDACT_BLOCK_MAX_COUNT;
count -= REDACT_BLOCK_MAX_COUNT;
}
redact_block_phys_t *coalesce = &md->md_coalesce_block;
boolean_t new;
if (coalesce->rbp_size_count == 0) {
new = B_TRUE;
enqueue = B_FALSE;
} else {
uint64_t old_count = redact_block_get_count(coalesce);
if (coalesce->rbp_object == object &&
coalesce->rbp_blkid + old_count == blkid &&
old_count + count <= REDACT_BLOCK_MAX_COUNT) {
ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
redact_block_set_count(coalesce, old_count + count);
new = B_FALSE;
enqueue = B_FALSE;
} else {
new = B_TRUE;
enqueue = B_TRUE;
}
}
if (new) {
cur = *coalesce;
coalesce->rbp_blkid = blkid;
coalesce->rbp_object = object;
redact_block_set_count(coalesce, count);
redact_block_set_size(coalesce, blksz);
}
if (enqueue && redact_block_get_size(&cur) != 0) {
struct redact_block_list_node *rbln =
kmem_alloc(sizeof (struct redact_block_list_node),
KM_SLEEP);
rbln->block = cur;
list_insert_tail(&md->md_redact_block_pending, rbln);
}
if (gethrtime() > md->md_last_time +
redaction_list_update_interval_ns) {
commit_rl_updates(os, md, object, blkid);
}
}
/*
* This thread merges all the redaction records provided by the worker threads,
* and determines which blocks are redacted by all the snapshots. The algorithm
* for doing so is similar to performing a merge in mergesort with n sub-lists
* instead of 2, with some added complexity due to the fact that the entries are
* ranges, not just single blocks. This algorithm relies on the fact that the
* queues are sorted, which is ensured by the fact that traverse_dataset
* traverses the dataset in a consistent order. We pull one entry off the front
* of the queues of each secure dataset traversal thread. Then we repeat the
* following: each record represents a range of blocks modified by one of the
* redaction snapshots, and each block in that range may need to be redacted in
* the send stream. Find the record with the latest start of its range, and the
* record with the earliest end of its range. If the last start is before the
* first end, then we know that the blocks in the range [last_start, first_end]
* are covered by all of the ranges at the front of the queues, which means
* every thread redacts that whole range. For example, let's say the ranges on
* each queue look like this:
*
* Block Id 1 2 3 4 5 6 7 8 9 10 11
* Thread 1 | [====================]
* Thread 2 | [========]
* Thread 3 | [=================]
*
* Thread 3 has the last start (5), and the thread 2 has the last end (6). All
* three threads modified the range [5,6], so that data should not be sent over
* the wire. After we've determined whether or not to redact anything, we take
* the record with the first end. We discard that record, and pull a new one
* off the front of the queue it came from. In the above example, we would
* discard Thread 2's record, and pull a new one. Let's say the next record we
* pulled from Thread 2 covered range [10,11]. The new layout would look like
* this:
*
* Block Id 1 2 3 4 5 6 7 8 9 10 11
* Thread 1 | [====================]
* Thread 2 | [==]
* Thread 3 | [=================]
*
* When we compare the last start (10, from Thread 2) and the first end (9, from
* Thread 1), we see that the last start is greater than the first end.
* Therefore, we do not redact anything from these records. We'll iterate by
* replacing the record from Thread 1.
*
* We iterate by replacing the record with the lowest end because we know
* that the record with the lowest end has helped us as much as it can. All the
* ranges before it that we will ever redact have been redacted. In addition,
* by replacing the one with the lowest end, we guarantee we catch all ranges
* that need to be redacted. For example, if in the case above we had replaced
* the record from Thread 1 instead, we might have ended up with the following:
*
* Block Id 1 2 3 4 5 6 7 8 9 10 11 12
* Thread 1 | [==]
* Thread 2 | [========]
* Thread 3 | [=================]
*
* If the next record from Thread 2 had been [8,10], for example, we should have
* redacted part of that range, but because we updated Thread 1's record, we
* missed it.
*
* We implement this algorithm by using two trees. The first sorts the
* redaction records by their start_zb, and the second sorts them by their
* end_zb. We use these to find the record with the last start and the record
* with the first end. We create a record with that start and end, and send it
* on. The overall runtime of this implementation is O(n log m), where n is the
* total number of redaction records from all the different redaction snapshots,
* and m is the number of redaction snapshots.
*
* If we redact with respect to zero snapshots, we create a redaction
* record with the start object and blkid to 0, and the end object and blkid to
* UINT64_MAX. This will result in us redacting every block.
*/
static int
perform_thread_merge(bqueue_t *q, uint32_t num_threads,
struct redact_thread_arg *thread_args, boolean_t *cancel)
{
struct redact_node *redact_nodes = NULL;
avl_tree_t start_tree, end_tree;
struct redact_record *record;
struct redact_record *current_record = NULL;
int err = 0;
struct merge_data md = { {0} };
list_create(&md.md_redact_block_pending,
sizeof (struct redact_block_list_node),
offsetof(struct redact_block_list_node, node));
/*
* If we're redacting with respect to zero snapshots, then no data is
* permitted to be sent. We enqueue a record that redacts all blocks,
* and an eos marker.
*/
if (num_threads == 0) {
record = kmem_zalloc(sizeof (struct redact_record),
KM_SLEEP);
// We can't redact object 0, so don't try.
record->start_object = 1;
record->start_blkid = 0;
record->end_object = record->end_blkid = UINT64_MAX;
bqueue_enqueue(q, record, sizeof (*record));
return (0);
}
if (num_threads > 0) {
redact_nodes = kmem_zalloc(num_threads *
sizeof (*redact_nodes), KM_SLEEP);
}
avl_create(&start_tree, redact_node_compare_start,
sizeof (struct redact_node),
offsetof(struct redact_node, avl_node_start));
avl_create(&end_tree, redact_node_compare_end,
sizeof (struct redact_node),
offsetof(struct redact_node, avl_node_end));
for (int i = 0; i < num_threads; i++) {
struct redact_node *node = &redact_nodes[i];
struct redact_thread_arg *targ = &thread_args[i];
node->record = bqueue_dequeue(&targ->q);
node->rt_arg = targ;
node->thread_num = i;
avl_add(&start_tree, node);
avl_add(&end_tree, node);
}
/*
* Once the first record in the end tree has returned EOS, every record
* must be an EOS record, so we should stop.
*/
while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
record->eos_marker) {
if (*cancel) {
err = EINTR;
break;
}
struct redact_node *last_start = avl_last(&start_tree);
struct redact_node *first_end = avl_first(&end_tree);
/*
* If the last start record is before the first end record,
* then we have blocks that are redacted by all threads.
* Therefore, we should redact them. Copy the record, and send
* it to the main thread.
*/
if (redact_record_before(last_start->record,
first_end->record)) {
record = kmem_zalloc(sizeof (struct redact_record),
KM_SLEEP);
*record = *first_end->record;
record->start_object = last_start->record->start_object;
record->start_blkid = last_start->record->start_blkid;
record_merge_enqueue(q, &current_record,
record);
}
err = update_avl_trees(&start_tree, &end_tree, first_end);
}
/*
* We're done; if we were cancelled, we need to cancel our workers and
* clear out their queues. Either way, we need to remove every thread's
* redact_node struct from the avl trees.
*/
for (int i = 0; i < num_threads; i++) {
if (err != 0) {
thread_args[i].cancel = B_TRUE;
while (!redact_nodes[i].record->eos_marker) {
(void) update_avl_trees(&start_tree, &end_tree,
&redact_nodes[i]);
}
}
avl_remove(&start_tree, &redact_nodes[i]);
avl_remove(&end_tree, &redact_nodes[i]);
kmem_free(redact_nodes[i].record,
sizeof (struct redact_record));
}
avl_destroy(&start_tree);
avl_destroy(&end_tree);
kmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
if (current_record != NULL)
bqueue_enqueue(q, current_record, sizeof (current_record));
return (err);
}
struct redact_merge_thread_arg {
bqueue_t q;
spa_t *spa;
int numsnaps;
struct redact_thread_arg *thr_args;
boolean_t cancel;
int error_code;
};
static void
redact_merge_thread(void *arg)
{
struct redact_merge_thread_arg *rmta = arg;
rmta->error_code = perform_thread_merge(&rmta->q,
rmta->numsnaps, rmta->thr_args, &rmta->cancel);
struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
rec->eos_marker = B_TRUE;
bqueue_enqueue_flush(&rmta->q, rec, 1);
thread_exit();
}
/*
* Find the next object in or after the redaction range passed in, and hold
* its dnode with the provided tag. Also update *object to contain the new
* object number.
*/
static int
hold_next_object(objset_t *os, struct redact_record *rec, void *tag,
uint64_t *object, dnode_t **dn)
{
int err = 0;
if (*dn != NULL)
dnode_rele(*dn, tag);
*dn = NULL;
if (*object < rec->start_object) {
*object = rec->start_object - 1;
}
err = dmu_object_next(os, object, B_FALSE, 0);
if (err != 0)
return (err);
err = dnode_hold(os, *object, tag, dn);
while (err == 0 && (*object < rec->start_object ||
DMU_OT_IS_METADATA((*dn)->dn_type))) {
dnode_rele(*dn, tag);
*dn = NULL;
err = dmu_object_next(os, object, B_FALSE, 0);
if (err != 0)
break;
err = dnode_hold(os, *object, tag, dn);
}
return (err);
}
static int
perform_redaction(objset_t *os, redaction_list_t *rl,
struct redact_merge_thread_arg *rmta)
{
int err = 0;
bqueue_t *q = &rmta->q;
struct redact_record *rec = NULL;
struct merge_data md = { {0} };
list_create(&md.md_redact_block_pending,
sizeof (struct redact_block_list_node),
offsetof(struct redact_block_list_node, node));
md.md_redaction_list = rl;
for (int i = 0; i < TXG_SIZE; i++) {
list_create(&md.md_blocks[i],
sizeof (struct redact_block_list_node),
offsetof(struct redact_block_list_node, node));
}
dnode_t *dn = NULL;
uint64_t prev_obj = 0;
for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
rec = get_next_redact_record(q, rec)) {
ASSERT3U(rec->start_object, !=, 0);
uint64_t object;
if (prev_obj != rec->start_object) {
object = rec->start_object - 1;
err = hold_next_object(os, rec, FTAG, &object, &dn);
} else {
object = prev_obj;
}
while (err == 0 && object <= rec->end_object) {
if (issig(JUSTLOOKING) && issig(FORREAL)) {
err = EINTR;
break;
}
/*
* Part of the current object is contained somewhere in
* the range covered by rec.
*/
uint64_t startblkid;
uint64_t endblkid;
uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
if (rec->start_object < object)
startblkid = 0;
else if (rec->start_blkid > maxblkid)
break;
else
startblkid = rec->start_blkid;
if (rec->end_object > object || rec->end_blkid >
maxblkid) {
endblkid = maxblkid;
} else {
endblkid = rec->end_blkid;
}
update_redaction_list(&md, os, object, startblkid,
endblkid, dn->dn_datablksz);
if (object == rec->end_object)
break;
err = hold_next_object(os, rec, FTAG, &object, &dn);
}
if (err == ESRCH)
err = 0;
if (dn != NULL)
prev_obj = object;
}
if (err == 0 && dn != NULL)
dnode_rele(dn, FTAG);
if (err == ESRCH)
err = 0;
rmta->cancel = B_TRUE;
while (!rec->eos_marker)
rec = get_next_redact_record(q, rec);
kmem_free(rec, sizeof (*rec));
/*
* There may be a block that's being coalesced, sync that out before we
* return.
*/
if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
struct redact_block_list_node *rbln =
kmem_alloc(sizeof (struct redact_block_list_node),
KM_SLEEP);
rbln->block = md.md_coalesce_block;
list_insert_tail(&md.md_redact_block_pending, rbln);
}
commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
/*
* Wait for all the redaction info to sync out before we return, so that
* anyone who attempts to resume this redaction will have all the data
* they need.
*/
dsl_pool_t *dp = spa_get_dsl(os->os_spa);
if (md.md_latest_synctask_txg != 0)
txg_wait_synced(dp, md.md_latest_synctask_txg);
for (int i = 0; i < TXG_SIZE; i++)
list_destroy(&md.md_blocks[i]);
return (err);
}
static boolean_t
redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
{
for (int i = 0; i < num_snaps; i++) {
if (snaps[i] == guid)
return (B_TRUE);
}
return (B_FALSE);
}
int
dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
const char *redactbook)
{
int err = 0;
dsl_pool_t *dp = NULL;
dsl_dataset_t *ds = NULL;
int numsnaps = 0;
objset_t *os;
struct redact_thread_arg *args = NULL;
redaction_list_t *new_rl = NULL;
char *newredactbook;
if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
return (err);
newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
KM_SLEEP);
if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
FTAG, &ds)) != 0) {
goto out;
}
dsl_dataset_long_hold(ds, FTAG);
if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
err = EINVAL;
goto out;
}
if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
err = EALREADY;
goto out;
}
numsnaps = fnvlist_num_pairs(redactnvl);
if (numsnaps > 0)
args = kmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
nvpair_t *pair = NULL;
for (int i = 0; i < numsnaps; i++) {
pair = nvlist_next_nvpair(redactnvl, pair);
const char *name = nvpair_name(pair);
struct redact_thread_arg *rta = &args[i];
err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
FTAG, &rta->ds);
if (err != 0)
break;
/*
* We want to do the long hold before we can get any other
* errors, because the cleanup code will release the long
* hold if rta->ds is filled in.
*/
dsl_dataset_long_hold(rta->ds, FTAG);
err = dmu_objset_from_ds(rta->ds, &rta->os);
if (err != 0)
break;
if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
err = EINVAL;
break;
}
if (dsl_dataset_feature_is_active(rta->ds,
SPA_FEATURE_REDACTED_DATASETS)) {
err = EALREADY;
break;
}
}
if (err != 0)
goto out;
VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL);
boolean_t resuming = B_FALSE;
zfs_bookmark_phys_t bookmark;
(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
char *c = strchr(newredactbook, '@');
ASSERT3P(c, !=, NULL);
int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
"#%s", redactbook);
if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
dsl_pool_rele(dp, FTAG);
kmem_free(newredactbook,
sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
if (args != NULL)
kmem_free(args, numsnaps * sizeof (*args));
return (SET_ERROR(ENAMETOOLONG));
}
err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
if (err == 0) {
resuming = B_TRUE;
if (bookmark.zbm_redaction_obj == 0) {
err = EEXIST;
goto out;
}
err = dsl_redaction_list_hold_obj(dp,
bookmark.zbm_redaction_obj, FTAG, &new_rl);
if (err != 0) {
err = EIO;
goto out;
}
dsl_redaction_list_long_hold(dp, new_rl, FTAG);
if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
err = ESRCH;
goto out;
}
for (int i = 0; i < numsnaps; i++) {
struct redact_thread_arg *rta = &args[i];
if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
new_rl->rl_phys->rlp_num_snaps,
dsl_dataset_phys(rta->ds)->ds_guid)) {
err = ESRCH;
goto out;
}
}
if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
err = EEXIST;
goto out;
}
dsl_pool_rele(dp, FTAG);
dp = NULL;
} else {
uint64_t *guids = NULL;
if (numsnaps > 0) {
guids = kmem_zalloc(numsnaps * sizeof (uint64_t),
KM_SLEEP);
}
for (int i = 0; i < numsnaps; i++) {
struct redact_thread_arg *rta = &args[i];
guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
}
dsl_pool_rele(dp, FTAG);
dp = NULL;
err = dsl_bookmark_create_redacted(newredactbook, snapname,
numsnaps, guids, FTAG, &new_rl);
kmem_free(guids, numsnaps * sizeof (uint64_t));
if (err != 0) {
goto out;
}
}
for (int i = 0; i < numsnaps; i++) {
struct redact_thread_arg *rta = &args[i];
(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
zfs_redact_queue_length,
offsetof(struct redact_record, ln));
if (resuming) {
rta->resume.zb_blkid =
new_rl->rl_phys->rlp_last_blkid;
rta->resume.zb_object =
new_rl->rl_phys->rlp_last_object;
}
rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
(void) thread_create(NULL, 0, redact_traverse_thread, rta,
0, curproc, TS_RUN, minclsyspri);
}
struct redact_merge_thread_arg *rmta;
rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
(void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
zfs_redact_queue_length, offsetof(struct redact_record, ln));
rmta->numsnaps = numsnaps;
rmta->spa = os->os_spa;
rmta->thr_args = args;
(void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
TS_RUN, minclsyspri);
err = perform_redaction(os, new_rl, rmta);
kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
out:
kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
if (new_rl != NULL) {
dsl_redaction_list_long_rele(new_rl, FTAG);
dsl_redaction_list_rele(new_rl, FTAG);
}
for (int i = 0; i < numsnaps; i++) {
struct redact_thread_arg *rta = &args[i];
/*
* rta->ds may be NULL if we got an error while filling
* it in.
*/
if (rta->ds != NULL) {
dsl_dataset_long_rele(rta->ds, FTAG);
dsl_dataset_rele_flags(rta->ds,
DS_HOLD_FLAG_DECRYPT, FTAG);
}
}
if (args != NULL)
kmem_free(args, numsnaps * sizeof (*args));
if (dp != NULL)
dsl_pool_rele(dp, FTAG);
if (ds != NULL) {
dsl_dataset_long_rele(ds, FTAG);
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
}
return (SET_ERROR(err));
}