zfs-builds-mm/zfs-0.8.3/module/zfs/vdev_disk.c

886 lines
22 KiB
C
Raw Normal View History

2020-03-01 19:43:35 +01:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
* LLNL-CODE-403049.
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/vdev_disk.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_trim.h>
#include <sys/abd.h>
#include <sys/fs/zfs.h>
#include <sys/zio.h>
#include <linux/mod_compat.h>
#include <linux/msdos_fs.h>
#include <linux/vfs_compat.h>
/*
* Unique identifier for the exclusive vdev holder.
*/
static void *zfs_vdev_holder = VDEV_HOLDER;
/*
* Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
* device is missing. The missing path may be transient since the links
* can be briefly removed and recreated in response to udev events.
*/
static unsigned zfs_vdev_open_timeout_ms = 1000;
/*
* Size of the "reserved" partition, in blocks.
*/
#define EFI_MIN_RESV_SIZE (16 * 1024)
/*
* Virtual device vector for disks.
*/
typedef struct dio_request {
zio_t *dr_zio; /* Parent ZIO */
atomic_t dr_ref; /* References */
int dr_error; /* Bio error */
int dr_bio_count; /* Count of bio's */
struct bio *dr_bio[0]; /* Attached bio's */
} dio_request_t;
#if defined(HAVE_OPEN_BDEV_EXCLUSIVE) || defined(HAVE_BLKDEV_GET_BY_PATH)
static fmode_t
vdev_bdev_mode(int smode)
{
fmode_t mode = 0;
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
if (smode & FREAD)
mode |= FMODE_READ;
if (smode & FWRITE)
mode |= FMODE_WRITE;
return (mode);
}
#else
static int
vdev_bdev_mode(int smode)
{
int mode = 0;
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
if ((smode & FREAD) && !(smode & FWRITE))
mode = SB_RDONLY;
return (mode);
}
#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
/*
* Returns the usable capacity (in bytes) for the partition or disk.
*/
static uint64_t
bdev_capacity(struct block_device *bdev)
{
return (i_size_read(bdev->bd_inode));
}
/*
* Returns the maximum expansion capacity of the block device (in bytes).
*
* It is possible to expand a vdev when it has been created as a wholedisk
* and the containing block device has increased in capacity. Or when the
* partition containing the pool has been manually increased in size.
*
* This function is only responsible for calculating the potential expansion
* size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
* responsible for verifying the expected partition layout in the wholedisk
* case, and updating the partition table if appropriate. Once the partition
* size has been increased the additional capacity will be visible using
* bdev_capacity().
*
* The returned maximum expansion capacity is always expected to be larger, or
* at the very least equal, to its usable capacity to prevent overestimating
* the pool expandsize.
*/
static uint64_t
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
{
uint64_t psize;
int64_t available;
if (wholedisk && bdev->bd_part != NULL && bdev != bdev->bd_contains) {
/*
* When reporting maximum expansion capacity for a wholedisk
* deduct any capacity which is expected to be lost due to
* alignment restrictions. Over reporting this value isn't
* harmful and would only result in slightly less capacity
* than expected post expansion.
* The estimated available space may be slightly smaller than
* bdev_capacity() for devices where the number of sectors is
* not a multiple of the alignment size and the partition layout
* is keeping less than PARTITION_END_ALIGNMENT bytes after the
* "reserved" EFI partition: in such cases return the device
* usable capacity.
*/
available = i_size_read(bdev->bd_contains->bd_inode) -
((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
PARTITION_END_ALIGNMENT) << SECTOR_BITS);
psize = MAX(available, bdev_capacity(bdev));
} else {
psize = bdev_capacity(bdev);
}
return (psize);
}
static void
vdev_disk_error(zio_t *zio)
{
/*
* This function can be called in interrupt context, for instance while
* handling IRQs coming from a misbehaving disk device; use printk()
* which is safe from any context.
*/
printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
"offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
zio->io_vd->vdev_path, zio->io_error, zio->io_type,
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
zio->io_flags);
}
static int
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
uint64_t *ashift)
{
struct block_device *bdev;
fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
vdev_disk_t *vd;
/* Must have a pathname and it must be absolute. */
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
vdev_dbgmsg(v, "invalid vdev_path");
return (SET_ERROR(EINVAL));
}
/*
* Reopen the device if it is currently open. When expanding a
* partition force re-scanning the partition table while closed
* in order to get an accurate updated block device size. Then
* since udev may need to recreate the device links increase the
* open retry timeout before reporting the device as unavailable.
*/
vd = v->vdev_tsd;
if (vd) {
char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
boolean_t reread_part = B_FALSE;
rw_enter(&vd->vd_lock, RW_WRITER);
bdev = vd->vd_bdev;
vd->vd_bdev = NULL;
if (bdev) {
if (v->vdev_expanding && bdev != bdev->bd_contains) {
bdevname(bdev->bd_contains, disk_name + 5);
reread_part = B_TRUE;
}
vdev_bdev_close(bdev, mode);
}
if (reread_part) {
bdev = vdev_bdev_open(disk_name, mode, zfs_vdev_holder);
if (!IS_ERR(bdev)) {
int error = vdev_bdev_reread_part(bdev);
vdev_bdev_close(bdev, mode);
if (error == 0) {
timeout = MSEC2NSEC(
zfs_vdev_open_timeout_ms * 2);
}
}
}
} else {
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
rw_enter(&vd->vd_lock, RW_WRITER);
}
/*
* Devices are always opened by the path provided at configuration
* time. This means that if the provided path is a udev by-id path
* then drives may be re-cabled without an issue. If the provided
* path is a udev by-path path, then the physical location information
* will be preserved. This can be critical for more complicated
* configurations where drives are located in specific physical
* locations to maximize the systems tolerance to component failure.
*
* Alternatively, you can provide your own udev rule to flexibly map
* the drives as you see fit. It is not advised that you use the
* /dev/[hd]d devices which may be reordered due to probing order.
* Devices in the wrong locations will be detected by the higher
* level vdev validation.
*
* The specified paths may be briefly removed and recreated in
* response to udev events. This should be exceptionally unlikely
* because the zpool command makes every effort to verify these paths
* have already settled prior to reaching this point. Therefore,
* a ENOENT failure at this point is highly likely to be transient
* and it is reasonable to sleep and retry before giving up. In
* practice delays have been observed to be on the order of 100ms.
*/
hrtime_t start = gethrtime();
bdev = ERR_PTR(-ENXIO);
while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
bdev = vdev_bdev_open(v->vdev_path, mode, zfs_vdev_holder);
if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
schedule_timeout(MSEC_TO_TICK(10));
} else if (IS_ERR(bdev)) {
break;
}
}
if (IS_ERR(bdev)) {
int error = -PTR_ERR(bdev);
vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
(u_longlong_t)(gethrtime() - start),
(u_longlong_t)timeout);
vd->vd_bdev = NULL;
v->vdev_tsd = vd;
rw_exit(&vd->vd_lock);
return (SET_ERROR(error));
} else {
vd->vd_bdev = bdev;
v->vdev_tsd = vd;
rw_exit(&vd->vd_lock);
}
struct request_queue *q = bdev_get_queue(vd->vd_bdev);
/* Determine the physical block size */
int block_size = vdev_bdev_block_size(vd->vd_bdev);
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
v->vdev_nowritecache = B_FALSE;
/* Set when device reports it supports TRIM. */
v->vdev_has_trim = !!blk_queue_discard(q);
/* Set when device reports it supports secure TRIM. */
v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
/* Inform the ZIO pipeline that we are non-rotational */
v->vdev_nonrot = blk_queue_nonrot(q);
/* Physical volume size in bytes for the partition */
*psize = bdev_capacity(vd->vd_bdev);
/* Physical volume size in bytes including possible expansion space */
*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
/* Based on the minimum sector size set the block size */
*ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
return (0);
}
static void
vdev_disk_close(vdev_t *v)
{
vdev_disk_t *vd = v->vdev_tsd;
if (v->vdev_reopening || vd == NULL)
return;
if (vd->vd_bdev != NULL) {
vdev_bdev_close(vd->vd_bdev,
vdev_bdev_mode(spa_mode(v->vdev_spa)));
}
rw_destroy(&vd->vd_lock);
kmem_free(vd, sizeof (vdev_disk_t));
v->vdev_tsd = NULL;
}
static dio_request_t *
vdev_disk_dio_alloc(int bio_count)
{
dio_request_t *dr;
int i;
dr = kmem_zalloc(sizeof (dio_request_t) +
sizeof (struct bio *) * bio_count, KM_SLEEP);
if (dr) {
atomic_set(&dr->dr_ref, 0);
dr->dr_bio_count = bio_count;
dr->dr_error = 0;
for (i = 0; i < dr->dr_bio_count; i++)
dr->dr_bio[i] = NULL;
}
return (dr);
}
static void
vdev_disk_dio_free(dio_request_t *dr)
{
int i;
for (i = 0; i < dr->dr_bio_count; i++)
if (dr->dr_bio[i])
bio_put(dr->dr_bio[i]);
kmem_free(dr, sizeof (dio_request_t) +
sizeof (struct bio *) * dr->dr_bio_count);
}
static void
vdev_disk_dio_get(dio_request_t *dr)
{
atomic_inc(&dr->dr_ref);
}
static int
vdev_disk_dio_put(dio_request_t *dr)
{
int rc = atomic_dec_return(&dr->dr_ref);
/*
* Free the dio_request when the last reference is dropped and
* ensure zio_interpret is called only once with the correct zio
*/
if (rc == 0) {
zio_t *zio = dr->dr_zio;
int error = dr->dr_error;
vdev_disk_dio_free(dr);
if (zio) {
zio->io_error = error;
ASSERT3S(zio->io_error, >=, 0);
if (zio->io_error)
vdev_disk_error(zio);
zio_delay_interrupt(zio);
}
}
return (rc);
}
BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
{
dio_request_t *dr = bio->bi_private;
int rc;
if (dr->dr_error == 0) {
#ifdef HAVE_1ARG_BIO_END_IO_T
dr->dr_error = BIO_END_IO_ERROR(bio);
#else
if (error)
dr->dr_error = -(error);
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
dr->dr_error = EIO;
#endif
}
/* Drop reference acquired by __vdev_disk_physio */
rc = vdev_disk_dio_put(dr);
}
static unsigned int
bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
{
unsigned int offset, size, i;
struct page *page;
offset = offset_in_page(bio_ptr);
for (i = 0; i < bio->bi_max_vecs; i++) {
size = PAGE_SIZE - offset;
if (bio_size <= 0)
break;
if (size > bio_size)
size = bio_size;
if (is_vmalloc_addr(bio_ptr))
page = vmalloc_to_page(bio_ptr);
else
page = virt_to_page(bio_ptr);
/*
* Some network related block device uses tcp_sendpage, which
* doesn't behave well when using 0-count page, this is a
* safety net to catch them.
*/
ASSERT3S(page_count(page), >, 0);
if (bio_add_page(bio, page, size, offset) != size)
break;
bio_ptr += size;
bio_size -= size;
offset = 0;
}
return (bio_size);
}
static unsigned int
bio_map_abd_off(struct bio *bio, abd_t *abd, unsigned int size, size_t off)
{
if (abd_is_linear(abd))
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, size));
return (abd_scatter_bio_map_off(bio, abd, size, off));
}
static inline void
vdev_submit_bio_impl(struct bio *bio)
{
#ifdef HAVE_1ARG_SUBMIT_BIO
submit_bio(bio);
#else
submit_bio(0, bio);
#endif
}
#ifdef HAVE_BIO_SET_DEV
#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
/*
* The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
* GPL-only bio_associate_blkg() symbol thus inadvertently converting
* the entire macro. Provide a minimal version which always assigns the
* request queue's root_blkg to the bio.
*/
static inline void
vdev_bio_associate_blkg(struct bio *bio)
{
struct request_queue *q = bio->bi_disk->queue;
ASSERT3P(q, !=, NULL);
ASSERT3P(bio->bi_blkg, ==, NULL);
if (q->root_blkg && blkg_tryget(q->root_blkg))
bio->bi_blkg = q->root_blkg;
}
#define bio_associate_blkg vdev_bio_associate_blkg
#endif
#else
/*
* Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
*/
static inline void
bio_set_dev(struct bio *bio, struct block_device *bdev)
{
bio->bi_bdev = bdev;
}
#endif /* HAVE_BIO_SET_DEV */
static inline void
vdev_submit_bio(struct bio *bio)
{
#ifdef HAVE_CURRENT_BIO_TAIL
struct bio **bio_tail = current->bio_tail;
current->bio_tail = NULL;
vdev_submit_bio_impl(bio);
current->bio_tail = bio_tail;
#else
struct bio_list *bio_list = current->bio_list;
current->bio_list = NULL;
vdev_submit_bio_impl(bio);
current->bio_list = bio_list;
#endif
}
static int
__vdev_disk_physio(struct block_device *bdev, zio_t *zio,
size_t io_size, uint64_t io_offset, int rw, int flags)
{
dio_request_t *dr;
uint64_t abd_offset;
uint64_t bio_offset;
int bio_size, bio_count = 16;
int i = 0, error = 0;
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
struct blk_plug plug;
#endif
/*
* Accessing outside the block device is never allowed.
*/
if (io_offset + io_size > bdev->bd_inode->i_size) {
vdev_dbgmsg(zio->io_vd,
"Illegal access %llu size %llu, device size %llu",
io_offset, io_size, i_size_read(bdev->bd_inode));
return (SET_ERROR(EIO));
}
retry:
dr = vdev_disk_dio_alloc(bio_count);
if (dr == NULL)
return (SET_ERROR(ENOMEM));
if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
bio_set_flags_failfast(bdev, &flags);
dr->dr_zio = zio;
/*
* When the IO size exceeds the maximum bio size for the request
* queue we are forced to break the IO in multiple bio's and wait
* for them all to complete. Ideally, all pool users will set
* their volume block size to match the maximum request size and
* the common case will be one bio per vdev IO request.
*/
abd_offset = 0;
bio_offset = io_offset;
bio_size = io_size;
for (i = 0; i <= dr->dr_bio_count; i++) {
/* Finished constructing bio's for given buffer */
if (bio_size <= 0)
break;
/*
* By default only 'bio_count' bio's per dio are allowed.
* However, if we find ourselves in a situation where more
* are needed we allocate a larger dio and warn the user.
*/
if (dr->dr_bio_count == i) {
vdev_disk_dio_free(dr);
bio_count *= 2;
goto retry;
}
/* bio_alloc() with __GFP_WAIT never returns NULL */
dr->dr_bio[i] = bio_alloc(GFP_NOIO,
MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
BIO_MAX_PAGES));
if (unlikely(dr->dr_bio[i] == NULL)) {
vdev_disk_dio_free(dr);
return (SET_ERROR(ENOMEM));
}
/* Matching put called by vdev_disk_physio_completion */
vdev_disk_dio_get(dr);
bio_set_dev(dr->dr_bio[i], bdev);
BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
dr->dr_bio[i]->bi_private = dr;
bio_set_op_attrs(dr->dr_bio[i], rw, flags);
/* Remaining size is returned to become the new size */
bio_size = bio_map_abd_off(dr->dr_bio[i], zio->io_abd,
bio_size, abd_offset);
/* Advance in buffer and construct another bio if needed */
abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
}
/* Extra reference to protect dio_request during vdev_submit_bio */
vdev_disk_dio_get(dr);
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
if (dr->dr_bio_count > 1)
blk_start_plug(&plug);
#endif
/* Submit all bio's associated with this dio */
for (i = 0; i < dr->dr_bio_count; i++)
if (dr->dr_bio[i])
vdev_submit_bio(dr->dr_bio[i]);
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
if (dr->dr_bio_count > 1)
blk_finish_plug(&plug);
#endif
(void) vdev_disk_dio_put(dr);
return (error);
}
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
{
zio_t *zio = bio->bi_private;
#ifdef HAVE_1ARG_BIO_END_IO_T
zio->io_error = BIO_END_IO_ERROR(bio);
#else
zio->io_error = -error;
#endif
if (zio->io_error && (zio->io_error == EOPNOTSUPP))
zio->io_vd->vdev_nowritecache = B_TRUE;
bio_put(bio);
ASSERT3S(zio->io_error, >=, 0);
if (zio->io_error)
vdev_disk_error(zio);
zio_interrupt(zio);
}
static int
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
{
struct request_queue *q;
struct bio *bio;
q = bdev_get_queue(bdev);
if (!q)
return (SET_ERROR(ENXIO));
bio = bio_alloc(GFP_NOIO, 0);
/* bio_alloc() with __GFP_WAIT never returns NULL */
if (unlikely(bio == NULL))
return (SET_ERROR(ENOMEM));
bio->bi_end_io = vdev_disk_io_flush_completion;
bio->bi_private = zio;
bio_set_dev(bio, bdev);
bio_set_flush(bio);
vdev_submit_bio(bio);
invalidate_bdev(bdev);
return (0);
}
static void
vdev_disk_io_start(zio_t *zio)
{
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
unsigned long trim_flags = 0;
int rw, flags, error;
/*
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
* Nothing to be done here but return failure.
*/
if (vd == NULL) {
zio->io_error = ENXIO;
zio_interrupt(zio);
return;
}
rw_enter(&vd->vd_lock, RW_READER);
/*
* If the vdev is closed, it's likely due to a failed reopen and is
* in the UNAVAIL state. Nothing to be done here but return failure.
*/
if (vd->vd_bdev == NULL) {
rw_exit(&vd->vd_lock);
zio->io_error = ENXIO;
zio_interrupt(zio);
return;
}
switch (zio->io_type) {
case ZIO_TYPE_IOCTL:
if (!vdev_readable(v)) {
rw_exit(&vd->vd_lock);
zio->io_error = SET_ERROR(ENXIO);
zio_interrupt(zio);
return;
}
switch (zio->io_cmd) {
case DKIOCFLUSHWRITECACHE:
if (zfs_nocacheflush)
break;
if (v->vdev_nowritecache) {
zio->io_error = SET_ERROR(ENOTSUP);
break;
}
error = vdev_disk_io_flush(vd->vd_bdev, zio);
if (error == 0) {
rw_exit(&vd->vd_lock);
return;
}
zio->io_error = error;
break;
default:
zio->io_error = SET_ERROR(ENOTSUP);
}
rw_exit(&vd->vd_lock);
zio_execute(zio);
return;
case ZIO_TYPE_WRITE:
rw = WRITE;
#if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
flags = (1 << BIO_RW_UNPLUG);
#elif defined(REQ_UNPLUG)
flags = REQ_UNPLUG;
#else
flags = 0;
#endif
break;
case ZIO_TYPE_READ:
rw = READ;
#if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
flags = (1 << BIO_RW_UNPLUG);
#elif defined(REQ_UNPLUG)
flags = REQ_UNPLUG;
#else
flags = 0;
#endif
break;
case ZIO_TYPE_TRIM:
#if defined(BLKDEV_DISCARD_SECURE)
if (zio->io_trim_flags & ZIO_TRIM_SECURE)
trim_flags |= BLKDEV_DISCARD_SECURE;
#endif
zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
trim_flags);
rw_exit(&vd->vd_lock);
zio_interrupt(zio);
return;
default:
rw_exit(&vd->vd_lock);
zio->io_error = SET_ERROR(ENOTSUP);
zio_interrupt(zio);
return;
}
zio->io_target_timestamp = zio_handle_io_delay(zio);
error = __vdev_disk_physio(vd->vd_bdev, zio,
zio->io_size, zio->io_offset, rw, flags);
rw_exit(&vd->vd_lock);
if (error) {
zio->io_error = error;
zio_interrupt(zio);
return;
}
}
static void
vdev_disk_io_done(zio_t *zio)
{
/*
* If the device returned EIO, we revalidate the media. If it is
* determined the media has changed this triggers the asynchronous
* removal of the device from the configuration.
*/
if (zio->io_error == EIO) {
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
if (check_disk_change(vd->vd_bdev)) {
vdev_bdev_invalidate(vd->vd_bdev);
v->vdev_remove_wanted = B_TRUE;
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
}
}
}
static void
vdev_disk_hold(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
/* We must have a pathname, and it must be absolute. */
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
return;
/*
* Only prefetch path and devid info if the device has
* never been opened.
*/
if (vd->vdev_tsd != NULL)
return;
/* XXX: Implement me as a vnode lookup for the device */
vd->vdev_name_vp = NULL;
vd->vdev_devid_vp = NULL;
}
static void
vdev_disk_rele(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
/* XXX: Implement me as a vnode rele for the device */
}
vdev_ops_t vdev_disk_ops = {
.vdev_op_open = vdev_disk_open,
.vdev_op_close = vdev_disk_close,
.vdev_op_asize = vdev_default_asize,
.vdev_op_io_start = vdev_disk_io_start,
.vdev_op_io_done = vdev_disk_io_done,
.vdev_op_state_change = NULL,
.vdev_op_need_resilver = NULL,
.vdev_op_hold = vdev_disk_hold,
.vdev_op_rele = vdev_disk_rele,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
.vdev_op_leaf = B_TRUE /* leaf vdev */
};
/*
* The zfs_vdev_scheduler module option has been deprecated. Setting this
* value no longer has any effect. It has not yet been entirely removed
* to allow the module to be loaded if this option is specified in the
* /etc/modprobe.d/zfs.conf file. The following warning will be logged.
*/
static int
param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
{
int error = param_set_charp(val, kp);
if (error == 0) {
printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
"is not supported.\n");
}
return (error);
}
char *zfs_vdev_scheduler = "unused";
module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
param_get_charp, &zfs_vdev_scheduler, 0644);
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");