zfs-builds-mm/zfs-0.8.2/module/icp/spi/kcf_spi.c

926 lines
27 KiB
C
Raw Normal View History

2019-10-24 23:13:56 +02:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* This file is part of the core Kernel Cryptographic Framework.
* It implements the SPI functions exported to cryptographic
* providers.
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/sched_impl.h>
#include <sys/crypto/spi.h>
/*
* minalloc and maxalloc values to be used for taskq_create().
*/
int crypto_taskq_threads = CRYPTO_TASKQ_THREADS;
int crypto_taskq_minalloc = CYRPTO_TASKQ_MIN;
int crypto_taskq_maxalloc = CRYPTO_TASKQ_MAX;
static void remove_provider(kcf_provider_desc_t *);
static void process_logical_providers(crypto_provider_info_t *,
kcf_provider_desc_t *);
static int init_prov_mechs(crypto_provider_info_t *, kcf_provider_desc_t *);
static int kcf_prov_kstat_update(kstat_t *, int);
static void delete_kstat(kcf_provider_desc_t *);
static kcf_prov_stats_t kcf_stats_ks_data_template = {
{ "kcf_ops_total", KSTAT_DATA_UINT64 },
{ "kcf_ops_passed", KSTAT_DATA_UINT64 },
{ "kcf_ops_failed", KSTAT_DATA_UINT64 },
{ "kcf_ops_returned_busy", KSTAT_DATA_UINT64 }
};
#define KCF_SPI_COPY_OPS(src, dst, ops) if ((src)->ops != NULL) \
*((dst)->ops) = *((src)->ops);
/*
* Copy an ops vector from src to dst. Used during provider registration
* to copy the ops vector from the provider info structure to the
* provider descriptor maintained by KCF.
* Copying the ops vector specified by the provider is needed since the
* framework does not require the provider info structure to be
* persistent.
*/
static void
copy_ops_vector_v1(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
{
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_control_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_digest_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_cipher_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mac_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_sign_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_verify_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_cipher_mac_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_random_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_session_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_object_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_key_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_provider_ops);
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_ctx_ops);
}
static void
copy_ops_vector_v2(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
{
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mech_ops);
}
static void
copy_ops_vector_v3(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
{
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_nostore_key_ops);
}
/*
* This routine is used to add cryptographic providers to the KEF framework.
* Providers pass a crypto_provider_info structure to crypto_register_provider()
* and get back a handle. The crypto_provider_info structure contains a
* list of mechanisms supported by the provider and an ops vector containing
* provider entry points. Hardware providers call this routine in their attach
* routines. Software providers call this routine in their _init() routine.
*/
int
crypto_register_provider(crypto_provider_info_t *info,
crypto_kcf_provider_handle_t *handle)
{
char *ks_name;
kcf_provider_desc_t *prov_desc = NULL;
int ret = CRYPTO_ARGUMENTS_BAD;
if (info->pi_interface_version > CRYPTO_SPI_VERSION_3)
return (CRYPTO_VERSION_MISMATCH);
/*
* Check provider type, must be software, hardware, or logical.
*/
if (info->pi_provider_type != CRYPTO_HW_PROVIDER &&
info->pi_provider_type != CRYPTO_SW_PROVIDER &&
info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER)
return (CRYPTO_ARGUMENTS_BAD);
/*
* Allocate and initialize a new provider descriptor. We also
* hold it and release it when done.
*/
prov_desc = kcf_alloc_provider_desc(info);
KCF_PROV_REFHOLD(prov_desc);
prov_desc->pd_prov_type = info->pi_provider_type;
/* provider-private handle, opaque to KCF */
prov_desc->pd_prov_handle = info->pi_provider_handle;
/* copy provider description string */
if (info->pi_provider_description != NULL) {
/*
* pi_provider_descriptor is a string that can contain
* up to CRYPTO_PROVIDER_DESCR_MAX_LEN + 1 characters
* INCLUDING the terminating null character. A bcopy()
* is necessary here as pd_description should not have
* a null character. See comments in kcf_alloc_provider_desc()
* for details on pd_description field.
*/
bcopy(info->pi_provider_description, prov_desc->pd_description,
MIN(strlen(info->pi_provider_description),
(size_t)CRYPTO_PROVIDER_DESCR_MAX_LEN));
}
if (info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) {
if (info->pi_ops_vector == NULL) {
goto bail;
}
copy_ops_vector_v1(info->pi_ops_vector,
prov_desc->pd_ops_vector);
if (info->pi_interface_version >= CRYPTO_SPI_VERSION_2) {
copy_ops_vector_v2(info->pi_ops_vector,
prov_desc->pd_ops_vector);
prov_desc->pd_flags = info->pi_flags;
}
if (info->pi_interface_version == CRYPTO_SPI_VERSION_3) {
copy_ops_vector_v3(info->pi_ops_vector,
prov_desc->pd_ops_vector);
}
}
/* object_ops and nostore_key_ops are mutually exclusive */
if (prov_desc->pd_ops_vector->co_object_ops &&
prov_desc->pd_ops_vector->co_nostore_key_ops) {
goto bail;
}
/* process the mechanisms supported by the provider */
if ((ret = init_prov_mechs(info, prov_desc)) != CRYPTO_SUCCESS)
goto bail;
/*
* Add provider to providers tables, also sets the descriptor
* pd_prov_id field.
*/
if ((ret = kcf_prov_tab_add_provider(prov_desc)) != CRYPTO_SUCCESS) {
undo_register_provider(prov_desc, B_FALSE);
goto bail;
}
/*
* We create a taskq only for a hardware provider. The global
* software queue is used for software providers. We handle ordering
* of multi-part requests in the taskq routine. So, it is safe to
* have multiple threads for the taskq. We pass TASKQ_PREPOPULATE flag
* to keep some entries cached to improve performance.
*/
if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
prov_desc->pd_sched_info.ks_taskq = taskq_create("kcf_taskq",
crypto_taskq_threads, minclsyspri,
crypto_taskq_minalloc, crypto_taskq_maxalloc,
TASKQ_PREPOPULATE);
else
prov_desc->pd_sched_info.ks_taskq = NULL;
/* no kernel session to logical providers */
if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
/*
* Open a session for session-oriented providers. This session
* is used for all kernel consumers. This is fine as a provider
* is required to support multiple thread access to a session.
* We can do this only after the taskq has been created as we
* do a kcf_submit_request() to open the session.
*/
if (KCF_PROV_SESSION_OPS(prov_desc) != NULL) {
kcf_req_params_t params;
KCF_WRAP_SESSION_OPS_PARAMS(&params,
KCF_OP_SESSION_OPEN, &prov_desc->pd_sid, 0,
CRYPTO_USER, NULL, 0, prov_desc);
ret = kcf_submit_request(prov_desc, NULL, NULL, &params,
B_FALSE);
if (ret != CRYPTO_SUCCESS) {
undo_register_provider(prov_desc, B_TRUE);
ret = CRYPTO_FAILED;
goto bail;
}
}
}
if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
/*
* Create the kstat for this provider. There is a kstat
* installed for each successfully registered provider.
* This kstat is deleted, when the provider unregisters.
*/
if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
ks_name = kmem_asprintf("%s_%s",
"NONAME", "provider_stats");
} else {
ks_name = kmem_asprintf("%s_%d_%u_%s",
"NONAME", 0, prov_desc->pd_prov_id,
"provider_stats");
}
prov_desc->pd_kstat = kstat_create("kcf", 0, ks_name, "crypto",
KSTAT_TYPE_NAMED, sizeof (kcf_prov_stats_t) /
sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (prov_desc->pd_kstat != NULL) {
bcopy(&kcf_stats_ks_data_template,
&prov_desc->pd_ks_data,
sizeof (kcf_stats_ks_data_template));
prov_desc->pd_kstat->ks_data = &prov_desc->pd_ks_data;
KCF_PROV_REFHOLD(prov_desc);
KCF_PROV_IREFHOLD(prov_desc);
prov_desc->pd_kstat->ks_private = prov_desc;
prov_desc->pd_kstat->ks_update = kcf_prov_kstat_update;
kstat_install(prov_desc->pd_kstat);
}
strfree(ks_name);
}
if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
process_logical_providers(info, prov_desc);
mutex_enter(&prov_desc->pd_lock);
prov_desc->pd_state = KCF_PROV_READY;
mutex_exit(&prov_desc->pd_lock);
kcf_do_notify(prov_desc, B_TRUE);
*handle = prov_desc->pd_kcf_prov_handle;
ret = CRYPTO_SUCCESS;
bail:
KCF_PROV_REFRELE(prov_desc);
return (ret);
}
/*
* This routine is used to notify the framework when a provider is being
* removed. Hardware providers call this routine in their detach routines.
* Software providers call this routine in their _fini() routine.
*/
int
crypto_unregister_provider(crypto_kcf_provider_handle_t handle)
{
uint_t mech_idx;
kcf_provider_desc_t *desc;
kcf_prov_state_t saved_state;
/* lookup provider descriptor */
if ((desc = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
return (CRYPTO_UNKNOWN_PROVIDER);
mutex_enter(&desc->pd_lock);
/*
* Check if any other thread is disabling or removing
* this provider. We return if this is the case.
*/
if (desc->pd_state >= KCF_PROV_DISABLED) {
mutex_exit(&desc->pd_lock);
/* Release reference held by kcf_prov_tab_lookup(). */
KCF_PROV_REFRELE(desc);
return (CRYPTO_BUSY);
}
saved_state = desc->pd_state;
desc->pd_state = KCF_PROV_REMOVED;
if (saved_state == KCF_PROV_BUSY) {
/*
* The per-provider taskq threads may be waiting. We
* signal them so that they can start failing requests.
*/
cv_broadcast(&desc->pd_resume_cv);
}
if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
/*
* Check if this provider is currently being used.
* pd_irefcnt is the number of holds from the internal
* structures. We add one to account for the above lookup.
*/
if (desc->pd_refcnt > desc->pd_irefcnt + 1) {
desc->pd_state = saved_state;
mutex_exit(&desc->pd_lock);
/* Release reference held by kcf_prov_tab_lookup(). */
KCF_PROV_REFRELE(desc);
/*
* The administrator presumably will stop the clients
* thus removing the holds, when they get the busy
* return value. Any retry will succeed then.
*/
return (CRYPTO_BUSY);
}
}
mutex_exit(&desc->pd_lock);
if (desc->pd_prov_type != CRYPTO_SW_PROVIDER) {
remove_provider(desc);
}
if (desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
/* remove the provider from the mechanisms tables */
for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
mech_idx++) {
kcf_remove_mech_provider(
desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
}
}
/* remove provider from providers table */
if (kcf_prov_tab_rem_provider((crypto_provider_id_t)handle) !=
CRYPTO_SUCCESS) {
/* Release reference held by kcf_prov_tab_lookup(). */
KCF_PROV_REFRELE(desc);
return (CRYPTO_UNKNOWN_PROVIDER);
}
delete_kstat(desc);
if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
/* Release reference held by kcf_prov_tab_lookup(). */
KCF_PROV_REFRELE(desc);
/*
* Wait till the existing requests complete.
*/
mutex_enter(&desc->pd_lock);
while (desc->pd_state != KCF_PROV_FREED)
cv_wait(&desc->pd_remove_cv, &desc->pd_lock);
mutex_exit(&desc->pd_lock);
} else {
/*
* Wait until requests that have been sent to the provider
* complete.
*/
mutex_enter(&desc->pd_lock);
while (desc->pd_irefcnt > 0)
cv_wait(&desc->pd_remove_cv, &desc->pd_lock);
mutex_exit(&desc->pd_lock);
}
kcf_do_notify(desc, B_FALSE);
if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
/*
* This is the only place where kcf_free_provider_desc()
* is called directly. KCF_PROV_REFRELE() should free the
* structure in all other places.
*/
ASSERT(desc->pd_state == KCF_PROV_FREED &&
desc->pd_refcnt == 0);
kcf_free_provider_desc(desc);
} else {
KCF_PROV_REFRELE(desc);
}
return (CRYPTO_SUCCESS);
}
/*
* This routine is used to notify the framework that the state of
* a cryptographic provider has changed. Valid state codes are:
*
* CRYPTO_PROVIDER_READY
* The provider indicates that it can process more requests. A provider
* will notify with this event if it previously has notified us with a
* CRYPTO_PROVIDER_BUSY.
*
* CRYPTO_PROVIDER_BUSY
* The provider can not take more requests.
*
* CRYPTO_PROVIDER_FAILED
* The provider encountered an internal error. The framework will not
* be sending any more requests to the provider. The provider may notify
* with a CRYPTO_PROVIDER_READY, if it is able to recover from the error.
*
* This routine can be called from user or interrupt context.
*/
void
crypto_provider_notification(crypto_kcf_provider_handle_t handle, uint_t state)
{
kcf_provider_desc_t *pd;
/* lookup the provider from the given handle */
if ((pd = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
return;
mutex_enter(&pd->pd_lock);
if (pd->pd_state <= KCF_PROV_VERIFICATION_FAILED)
goto out;
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
cmn_err(CE_WARN, "crypto_provider_notification: "
"logical provider (%x) ignored\n", handle);
goto out;
}
switch (state) {
case CRYPTO_PROVIDER_READY:
switch (pd->pd_state) {
case KCF_PROV_BUSY:
pd->pd_state = KCF_PROV_READY;
/*
* Signal the per-provider taskq threads that they
* can start submitting requests.
*/
cv_broadcast(&pd->pd_resume_cv);
break;
case KCF_PROV_FAILED:
/*
* The provider recovered from the error. Let us
* use it now.
*/
pd->pd_state = KCF_PROV_READY;
break;
default:
break;
}
break;
case CRYPTO_PROVIDER_BUSY:
switch (pd->pd_state) {
case KCF_PROV_READY:
pd->pd_state = KCF_PROV_BUSY;
break;
default:
break;
}
break;
case CRYPTO_PROVIDER_FAILED:
/*
* We note the failure and return. The per-provider taskq
* threads check this flag and start failing the
* requests, if it is set. See process_req_hwp() for details.
*/
switch (pd->pd_state) {
case KCF_PROV_READY:
pd->pd_state = KCF_PROV_FAILED;
break;
case KCF_PROV_BUSY:
pd->pd_state = KCF_PROV_FAILED;
/*
* The per-provider taskq threads may be waiting. We
* signal them so that they can start failing requests.
*/
cv_broadcast(&pd->pd_resume_cv);
break;
default:
break;
}
break;
default:
break;
}
out:
mutex_exit(&pd->pd_lock);
KCF_PROV_REFRELE(pd);
}
/*
* This routine is used to notify the framework the result of
* an asynchronous request handled by a provider. Valid error
* codes are the same as the CRYPTO_* errors defined in common.h.
*
* This routine can be called from user or interrupt context.
*/
void
crypto_op_notification(crypto_req_handle_t handle, int error)
{
kcf_call_type_t ctype;
if (handle == NULL)
return;
if ((ctype = GET_REQ_TYPE(handle)) == CRYPTO_SYNCH) {
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)handle;
if (error != CRYPTO_SUCCESS)
sreq->sn_provider->pd_sched_info.ks_nfails++;
KCF_PROV_IREFRELE(sreq->sn_provider);
kcf_sop_done(sreq, error);
} else {
kcf_areq_node_t *areq = (kcf_areq_node_t *)handle;
ASSERT(ctype == CRYPTO_ASYNCH);
if (error != CRYPTO_SUCCESS)
areq->an_provider->pd_sched_info.ks_nfails++;
KCF_PROV_IREFRELE(areq->an_provider);
kcf_aop_done(areq, error);
}
}
/*
* This routine is used by software providers to determine
* whether to use KM_SLEEP or KM_NOSLEEP during memory allocation.
* Note that hardware providers can always use KM_SLEEP. So,
* they do not need to call this routine.
*
* This routine can be called from user or interrupt context.
*/
int
crypto_kmflag(crypto_req_handle_t handle)
{
return (REQHNDL2_KMFLAG(handle));
}
/*
* Process the mechanism info structures specified by the provider
* during registration. A NULL crypto_provider_info_t indicates
* an already initialized provider descriptor.
*
* Mechanisms are not added to the kernel's mechanism table if the
* provider is a logical provider.
*
* Returns CRYPTO_SUCCESS on success, CRYPTO_ARGUMENTS if one
* of the specified mechanisms was malformed, or CRYPTO_HOST_MEMORY
* if the table of mechanisms is full.
*/
static int
init_prov_mechs(crypto_provider_info_t *info, kcf_provider_desc_t *desc)
{
uint_t mech_idx;
uint_t cleanup_idx;
int err = CRYPTO_SUCCESS;
kcf_prov_mech_desc_t *pmd;
int desc_use_count = 0;
int mcount = desc->pd_mech_list_count;
if (desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
if (info != NULL) {
ASSERT(info->pi_mechanisms != NULL);
bcopy(info->pi_mechanisms, desc->pd_mechanisms,
sizeof (crypto_mech_info_t) * mcount);
}
return (CRYPTO_SUCCESS);
}
/*
* Copy the mechanism list from the provider info to the provider
* descriptor. desc->pd_mechanisms has an extra crypto_mech_info_t
* element if the provider has random_ops since we keep an internal
* mechanism, SUN_RANDOM, in this case.
*/
if (info != NULL) {
if (info->pi_ops_vector->co_random_ops != NULL) {
crypto_mech_info_t *rand_mi;
/*
* Need the following check as it is possible to have
* a provider that implements just random_ops and has
* pi_mechanisms == NULL.
*/
if (info->pi_mechanisms != NULL) {
bcopy(info->pi_mechanisms, desc->pd_mechanisms,
sizeof (crypto_mech_info_t) * (mcount - 1));
}
rand_mi = &desc->pd_mechanisms[mcount - 1];
bzero(rand_mi, sizeof (crypto_mech_info_t));
(void) strncpy(rand_mi->cm_mech_name, SUN_RANDOM,
CRYPTO_MAX_MECH_NAME);
rand_mi->cm_func_group_mask = CRYPTO_FG_RANDOM;
} else {
ASSERT(info->pi_mechanisms != NULL);
bcopy(info->pi_mechanisms, desc->pd_mechanisms,
sizeof (crypto_mech_info_t) * mcount);
}
}
/*
* For each mechanism support by the provider, add the provider
* to the corresponding KCF mechanism mech_entry chain.
*/
for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; mech_idx++) {
crypto_mech_info_t *mi = &desc->pd_mechanisms[mech_idx];
if ((mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BITS) &&
(mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES)) {
err = CRYPTO_ARGUMENTS_BAD;
break;
}
if (desc->pd_flags & CRYPTO_HASH_NO_UPDATE &&
mi->cm_func_group_mask & CRYPTO_FG_DIGEST) {
/*
* We ask the provider to specify the limit
* per hash mechanism. But, in practice, a
* hardware limitation means all hash mechanisms
* will have the same maximum size allowed for
* input data. So, we make it a per provider
* limit to keep it simple.
*/
if (mi->cm_max_input_length == 0) {
err = CRYPTO_ARGUMENTS_BAD;
break;
} else {
desc->pd_hash_limit = mi->cm_max_input_length;
}
}
if ((err = kcf_add_mech_provider(mech_idx, desc, &pmd)) !=
KCF_SUCCESS)
break;
if (pmd == NULL)
continue;
/* The provider will be used for this mechanism */
desc_use_count++;
}
/*
* Don't allow multiple software providers with disabled mechanisms
* to register. Subsequent enabling of mechanisms will result in
* an unsupported configuration, i.e. multiple software providers
* per mechanism.
*/
if (desc_use_count == 0 && desc->pd_prov_type == CRYPTO_SW_PROVIDER)
return (CRYPTO_ARGUMENTS_BAD);
if (err == KCF_SUCCESS)
return (CRYPTO_SUCCESS);
/*
* An error occurred while adding the mechanism, cleanup
* and bail.
*/
for (cleanup_idx = 0; cleanup_idx < mech_idx; cleanup_idx++) {
kcf_remove_mech_provider(
desc->pd_mechanisms[cleanup_idx].cm_mech_name, desc);
}
if (err == KCF_MECH_TAB_FULL)
return (CRYPTO_HOST_MEMORY);
return (CRYPTO_ARGUMENTS_BAD);
}
/*
* Update routine for kstat. Only privileged users are allowed to
* access this information, since this information is sensitive.
* There are some cryptographic attacks (e.g. traffic analysis)
* which can use this information.
*/
static int
kcf_prov_kstat_update(kstat_t *ksp, int rw)
{
kcf_prov_stats_t *ks_data;
kcf_provider_desc_t *pd = (kcf_provider_desc_t *)ksp->ks_private;
if (rw == KSTAT_WRITE)
return (EACCES);
ks_data = ksp->ks_data;
ks_data->ps_ops_total.value.ui64 = pd->pd_sched_info.ks_ndispatches;
ks_data->ps_ops_failed.value.ui64 = pd->pd_sched_info.ks_nfails;
ks_data->ps_ops_busy_rval.value.ui64 = pd->pd_sched_info.ks_nbusy_rval;
ks_data->ps_ops_passed.value.ui64 =
pd->pd_sched_info.ks_ndispatches -
pd->pd_sched_info.ks_nfails -
pd->pd_sched_info.ks_nbusy_rval;
return (0);
}
/*
* Utility routine called from failure paths in crypto_register_provider()
* and from crypto_load_soft_disabled().
*/
void
undo_register_provider(kcf_provider_desc_t *desc, boolean_t remove_prov)
{
uint_t mech_idx;
/* remove the provider from the mechanisms tables */
for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
mech_idx++) {
kcf_remove_mech_provider(
desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
}
/* remove provider from providers table */
if (remove_prov)
(void) kcf_prov_tab_rem_provider(desc->pd_prov_id);
}
/*
* Utility routine called from crypto_load_soft_disabled(). Callers
* should have done a prior undo_register_provider().
*/
void
redo_register_provider(kcf_provider_desc_t *pd)
{
/* process the mechanisms supported by the provider */
(void) init_prov_mechs(NULL, pd);
/*
* Hold provider in providers table. We should not call
* kcf_prov_tab_add_provider() here as the provider descriptor
* is still valid which means it has an entry in the provider
* table.
*/
KCF_PROV_REFHOLD(pd);
KCF_PROV_IREFHOLD(pd);
}
/*
* Add provider (p1) to another provider's array of providers (p2).
* Hardware and logical providers use this array to cross-reference
* each other.
*/
static void
add_provider_to_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
{
kcf_provider_list_t *new;
new = kmem_alloc(sizeof (kcf_provider_list_t), KM_SLEEP);
mutex_enter(&p2->pd_lock);
new->pl_next = p2->pd_provider_list;
p2->pd_provider_list = new;
KCF_PROV_IREFHOLD(p1);
new->pl_provider = p1;
mutex_exit(&p2->pd_lock);
}
/*
* Remove provider (p1) from another provider's array of providers (p2).
* Hardware and logical providers use this array to cross-reference
* each other.
*/
static void
remove_provider_from_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
{
kcf_provider_list_t *pl = NULL, **prev;
mutex_enter(&p2->pd_lock);
for (pl = p2->pd_provider_list, prev = &p2->pd_provider_list;
pl != NULL; prev = &pl->pl_next, pl = pl->pl_next) {
if (pl->pl_provider == p1) {
break;
}
}
if (p1 == NULL) {
mutex_exit(&p2->pd_lock);
return;
}
/* detach and free kcf_provider_list structure */
KCF_PROV_IREFRELE(p1);
*prev = pl->pl_next;
kmem_free(pl, sizeof (*pl));
mutex_exit(&p2->pd_lock);
}
/*
* Convert an array of logical provider handles (crypto_provider_id)
* stored in a crypto_provider_info structure into an array of provider
* descriptors (kcf_provider_desc_t) attached to a logical provider.
*/
static void
process_logical_providers(crypto_provider_info_t *info, kcf_provider_desc_t *hp)
{
kcf_provider_desc_t *lp;
crypto_provider_id_t handle;
int count = info->pi_logical_provider_count;
int i;
/* add hardware provider to each logical provider */
for (i = 0; i < count; i++) {
handle = info->pi_logical_providers[i];
lp = kcf_prov_tab_lookup((crypto_provider_id_t)handle);
if (lp == NULL) {
continue;
}
add_provider_to_array(hp, lp);
hp->pd_flags |= KCF_LPROV_MEMBER;
/*
* A hardware provider has to have the provider descriptor of
* every logical provider it belongs to, so it can be removed
* from the logical provider if the hardware provider
* unregisters from the framework.
*/
add_provider_to_array(lp, hp);
KCF_PROV_REFRELE(lp);
}
}
/*
* This routine removes a provider from all of the logical or
* hardware providers it belongs to, and frees the provider's
* array of pointers to providers.
*/
static void
remove_provider(kcf_provider_desc_t *pp)
{
kcf_provider_desc_t *p;
kcf_provider_list_t *e, *next;
mutex_enter(&pp->pd_lock);
for (e = pp->pd_provider_list; e != NULL; e = next) {
p = e->pl_provider;
remove_provider_from_array(pp, p);
if (p->pd_prov_type == CRYPTO_HW_PROVIDER &&
p->pd_provider_list == NULL)
p->pd_flags &= ~KCF_LPROV_MEMBER;
KCF_PROV_IREFRELE(p);
next = e->pl_next;
kmem_free(e, sizeof (*e));
}
pp->pd_provider_list = NULL;
mutex_exit(&pp->pd_lock);
}
/*
* Dispatch events as needed for a provider. is_added flag tells
* whether the provider is registering or unregistering.
*/
void
kcf_do_notify(kcf_provider_desc_t *prov_desc, boolean_t is_added)
{
int i;
crypto_notify_event_change_t ec;
ASSERT(prov_desc->pd_state > KCF_PROV_VERIFICATION_FAILED);
/*
* Inform interested clients of the mechanisms becoming
* available/unavailable. We skip this for logical providers
* as they do not affect mechanisms.
*/
if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
ec.ec_provider_type = prov_desc->pd_prov_type;
ec.ec_change = is_added ? CRYPTO_MECH_ADDED :
CRYPTO_MECH_REMOVED;
for (i = 0; i < prov_desc->pd_mech_list_count; i++) {
(void) strlcpy(ec.ec_mech_name,
prov_desc->pd_mechanisms[i].cm_mech_name,
CRYPTO_MAX_MECH_NAME);
kcf_walk_ntfylist(CRYPTO_EVENT_MECHS_CHANGED, &ec);
}
}
/*
* Inform interested clients about the new or departing provider.
* In case of a logical provider, we need to notify the event only
* for the logical provider and not for the underlying
* providers which are known by the KCF_LPROV_MEMBER bit.
*/
if (prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER ||
(prov_desc->pd_flags & KCF_LPROV_MEMBER) == 0) {
kcf_walk_ntfylist(is_added ? CRYPTO_EVENT_PROVIDER_REGISTERED :
CRYPTO_EVENT_PROVIDER_UNREGISTERED, prov_desc);
}
}
static void
delete_kstat(kcf_provider_desc_t *desc)
{
/* destroy the kstat created for this provider */
if (desc->pd_kstat != NULL) {
kcf_provider_desc_t *kspd = desc->pd_kstat->ks_private;
/* release reference held by desc->pd_kstat->ks_private */
ASSERT(desc == kspd);
kstat_delete(kspd->pd_kstat);
desc->pd_kstat = NULL;
KCF_PROV_REFRELE(kspd);
KCF_PROV_IREFRELE(kspd);
}
}