zfs-builds-mm/zfs-0.8.1/module/icp/include/sys/crypto/impl.h

1364 lines
52 KiB
C
Raw Normal View History

2019-07-06 23:40:11 +02:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _SYS_CRYPTO_IMPL_H
#define _SYS_CRYPTO_IMPL_H
/*
* Kernel Cryptographic Framework private implementation definitions.
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/crypto/spi.h>
#include <sys/crypto/ioctl.h>
#ifdef __cplusplus
extern "C" {
#endif
#define KCF_MODULE "kcf"
/*
* Prefixes convention: structures internal to the kernel cryptographic
* framework start with 'kcf_'. Exposed structure start with 'crypto_'.
*/
/* Provider stats. Not protected. */
typedef struct kcf_prov_stats {
kstat_named_t ps_ops_total;
kstat_named_t ps_ops_passed;
kstat_named_t ps_ops_failed;
kstat_named_t ps_ops_busy_rval;
} kcf_prov_stats_t;
/* Various kcf stats. Not protected. */
typedef struct kcf_stats {
kstat_named_t ks_thrs_in_pool;
kstat_named_t ks_idle_thrs;
kstat_named_t ks_minthrs;
kstat_named_t ks_maxthrs;
kstat_named_t ks_swq_njobs;
kstat_named_t ks_swq_maxjobs;
kstat_named_t ks_taskq_threads;
kstat_named_t ks_taskq_minalloc;
kstat_named_t ks_taskq_maxalloc;
} kcf_stats_t;
/*
* Keep all the information needed by the scheduler from
* this provider.
*/
typedef struct kcf_sched_info {
/* The number of operations dispatched. */
uint64_t ks_ndispatches;
/* The number of operations that failed. */
uint64_t ks_nfails;
/* The number of operations that returned CRYPTO_BUSY. */
uint64_t ks_nbusy_rval;
/* taskq used to dispatch crypto requests */
taskq_t *ks_taskq;
} kcf_sched_info_t;
/*
* pd_irefcnt approximates the number of inflight requests to the
* provider. Though we increment this counter during registration for
* other purposes, that base value is mostly same across all providers.
* So, it is a good measure of the load on a provider when it is not
* in a busy state. Once a provider notifies it is busy, requests
* backup in the taskq. So, we use tq_nalloc in that case which gives
* the number of task entries in the task queue. Note that we do not
* acquire any locks here as it is not critical to get the exact number
* and the lock contention may be too costly for this code path.
*/
#define KCF_PROV_LOAD(pd) ((pd)->pd_state != KCF_PROV_BUSY ? \
(pd)->pd_irefcnt : (pd)->pd_sched_info.ks_taskq->tq_nalloc)
#define KCF_PROV_INCRSTATS(pd, error) { \
(pd)->pd_sched_info.ks_ndispatches++; \
if (error == CRYPTO_BUSY) \
(pd)->pd_sched_info.ks_nbusy_rval++; \
else if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED) \
(pd)->pd_sched_info.ks_nfails++; \
}
/*
* The following two macros should be
* #define KCF_OPS_CLASSSIZE (KCF_LAST_OPSCLASS - KCF_FIRST_OPSCLASS + 2)
* #define KCF_MAXMECHTAB KCF_MAXCIPHER
*
* However, doing that would involve reorganizing the header file a bit.
* When impl.h is broken up (bug# 4703218), this will be done. For now,
* we hardcode these values.
*/
#define KCF_OPS_CLASSSIZE 8
#define KCF_MAXMECHTAB 32
/*
* Valid values for the state of a provider. The order of
* the elements is important.
*
* Routines which get a provider or the list of providers
* should pick only those that are either in KCF_PROV_READY state
* or in KCF_PROV_BUSY state.
*/
typedef enum {
KCF_PROV_ALLOCATED = 1,
KCF_PROV_UNVERIFIED,
KCF_PROV_VERIFICATION_FAILED,
/*
* state < KCF_PROV_READY means the provider can not
* be used at all.
*/
KCF_PROV_READY,
KCF_PROV_BUSY,
/*
* state > KCF_PROV_BUSY means the provider can not
* be used for new requests.
*/
KCF_PROV_FAILED,
/*
* Threads setting the following two states should do so only
* if the current state < KCF_PROV_DISABLED.
*/
KCF_PROV_DISABLED,
KCF_PROV_REMOVED,
KCF_PROV_FREED
} kcf_prov_state_t;
#define KCF_IS_PROV_UNVERIFIED(pd) ((pd)->pd_state == KCF_PROV_UNVERIFIED)
#define KCF_IS_PROV_USABLE(pd) ((pd)->pd_state == KCF_PROV_READY || \
(pd)->pd_state == KCF_PROV_BUSY)
#define KCF_IS_PROV_REMOVED(pd) ((pd)->pd_state >= KCF_PROV_REMOVED)
/* Internal flags valid for pd_flags field */
#define KCF_PROV_RESTRICTED 0x40000000
#define KCF_LPROV_MEMBER 0x80000000 /* is member of a logical provider */
/*
* A provider descriptor structure. There is one such structure per
* provider. It is allocated and initialized at registration time and
* freed when the provider unregisters.
*
* pd_prov_type: Provider type, hardware or software
* pd_sid: Session ID of the provider used by kernel clients.
* This is valid only for session-oriented providers.
* pd_refcnt: Reference counter to this provider descriptor
* pd_irefcnt: References held by the framework internal structs
* pd_lock: lock protects pd_state and pd_provider_list
* pd_state: State value of the provider
* pd_provider_list: Used to cross-reference logical providers and their
* members. Not used for software providers.
* pd_resume_cv: cv to wait for state to change from KCF_PROV_BUSY
* pd_prov_handle: Provider handle specified by provider
* pd_ops_vector: The ops vector specified by Provider
* pd_mech_indx: Lookup table which maps a core framework mechanism
* number to an index in pd_mechanisms array
* pd_mechanisms: Array of mechanisms supported by the provider, specified
* by the provider during registration
* pd_sched_info: Scheduling information associated with the provider
* pd_mech_list_count: The number of entries in pi_mechanisms, specified
* by the provider during registration
* pd_name: Device name or module name
* pd_instance: Device instance
* pd_module_id: Module ID returned by modload
* pd_mctlp: Pointer to modctl structure for this provider
* pd_remove_cv: cv to wait on while the provider queue drains
* pd_description: Provider description string
* pd_flags bitwise OR of pi_flags from crypto_provider_info_t
* and other internal flags defined above.
* pd_hash_limit Maximum data size that hash mechanisms of this provider
* can support.
* pd_kcf_prov_handle: KCF-private handle assigned by KCF
* pd_prov_id: Identification # assigned by KCF to provider
* pd_kstat: kstat associated with the provider
* pd_ks_data: kstat data
*/
typedef struct kcf_provider_desc {
crypto_provider_type_t pd_prov_type;
crypto_session_id_t pd_sid;
uint_t pd_refcnt;
uint_t pd_irefcnt;
kmutex_t pd_lock;
kcf_prov_state_t pd_state;
struct kcf_provider_list *pd_provider_list;
kcondvar_t pd_resume_cv;
crypto_provider_handle_t pd_prov_handle;
crypto_ops_t *pd_ops_vector;
ushort_t pd_mech_indx[KCF_OPS_CLASSSIZE]\
[KCF_MAXMECHTAB];
crypto_mech_info_t *pd_mechanisms;
kcf_sched_info_t pd_sched_info;
uint_t pd_mech_list_count;
// char *pd_name;
// uint_t pd_instance;
// int pd_module_id;
// struct modctl *pd_mctlp;
kcondvar_t pd_remove_cv;
char *pd_description;
uint_t pd_flags;
uint_t pd_hash_limit;
crypto_kcf_provider_handle_t pd_kcf_prov_handle;
crypto_provider_id_t pd_prov_id;
kstat_t *pd_kstat;
kcf_prov_stats_t pd_ks_data;
} kcf_provider_desc_t;
/* useful for making a list of providers */
typedef struct kcf_provider_list {
struct kcf_provider_list *pl_next;
struct kcf_provider_desc *pl_provider;
} kcf_provider_list_t;
/* atomic operations in linux implictly form a memory barrier */
#define membar_exit()
/*
* If a component has a reference to a kcf_provider_desc_t,
* it REFHOLD()s. A new provider descriptor which is referenced only
* by the providers table has a reference counter of one.
*/
#define KCF_PROV_REFHOLD(desc) { \
atomic_add_32(&(desc)->pd_refcnt, 1); \
ASSERT((desc)->pd_refcnt != 0); \
}
#define KCF_PROV_IREFHOLD(desc) { \
atomic_add_32(&(desc)->pd_irefcnt, 1); \
ASSERT((desc)->pd_irefcnt != 0); \
}
#define KCF_PROV_IREFRELE(desc) { \
ASSERT((desc)->pd_irefcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(desc)->pd_irefcnt, -1) == 0) { \
cv_broadcast(&(desc)->pd_remove_cv); \
} \
}
#define KCF_PROV_REFHELD(desc) ((desc)->pd_refcnt >= 1)
#define KCF_PROV_REFRELE(desc) { \
ASSERT((desc)->pd_refcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(desc)->pd_refcnt, -1) == 0) { \
kcf_provider_zero_refcnt((desc)); \
} \
}
/* list of crypto_mech_info_t valid as the second mech in a dual operation */
typedef struct crypto_mech_info_list {
struct crypto_mech_info_list *ml_next;
crypto_mech_type_t ml_kcf_mechid; /* KCF's id */
crypto_mech_info_t ml_mech_info;
} crypto_mech_info_list_t;
/*
* An element in a mechanism provider descriptors chain.
* The kcf_prov_mech_desc_t is duplicated in every chain the provider belongs
* to. This is a small tradeoff memory vs mutex spinning time to access the
* common provider field.
*/
typedef struct kcf_prov_mech_desc {
struct kcf_mech_entry *pm_me; /* Back to the head */
struct kcf_prov_mech_desc *pm_next; /* Next in the chain */
crypto_mech_info_t pm_mech_info; /* Provider mech info */
crypto_mech_info_list_t *pm_mi_list; /* list for duals */
kcf_provider_desc_t *pm_prov_desc; /* Common desc. */
} kcf_prov_mech_desc_t;
/* and the notation shortcuts ... */
#define pm_provider_type pm_prov_desc.pd_provider_type
#define pm_provider_handle pm_prov_desc.pd_provider_handle
#define pm_ops_vector pm_prov_desc.pd_ops_vector
/*
* A mechanism entry in an xxx_mech_tab[]. me_pad was deemed
* to be unnecessary and removed.
*/
typedef struct kcf_mech_entry {
crypto_mech_name_t me_name; /* mechanism name */
crypto_mech_type_t me_mechid; /* Internal id for mechanism */
kmutex_t me_mutex; /* access protection */
kcf_prov_mech_desc_t *me_hw_prov_chain; /* list of HW providers */
kcf_prov_mech_desc_t *me_sw_prov; /* SW provider */
/*
* Number of HW providers in the chain. There is only one
* SW provider. So, we need only a count of HW providers.
*/
int me_num_hwprov;
/*
* When a SW provider is present, this is the generation number that
* ensures no objects from old SW providers are used in the new one
*/
uint32_t me_gen_swprov;
/*
* threshold for using hardware providers for this mech
*/
size_t me_threshold;
} kcf_mech_entry_t;
/*
* A policy descriptor structure. It is allocated and initialized
* when administrative ioctls load disabled mechanisms.
*
* pd_prov_type: Provider type, hardware or software
* pd_name: Device name or module name.
* pd_instance: Device instance.
* pd_refcnt: Reference counter for this policy descriptor
* pd_mutex: Protects array and count of disabled mechanisms.
* pd_disabled_count: Count of disabled mechanisms.
* pd_disabled_mechs: Array of disabled mechanisms.
*/
typedef struct kcf_policy_desc {
crypto_provider_type_t pd_prov_type;
char *pd_name;
uint_t pd_instance;
uint_t pd_refcnt;
kmutex_t pd_mutex;
uint_t pd_disabled_count;
crypto_mech_name_t *pd_disabled_mechs;
} kcf_policy_desc_t;
/*
* If a component has a reference to a kcf_policy_desc_t,
* it REFHOLD()s. A new policy descriptor which is referenced only
* by the policy table has a reference count of one.
*/
#define KCF_POLICY_REFHOLD(desc) { \
atomic_add_32(&(desc)->pd_refcnt, 1); \
ASSERT((desc)->pd_refcnt != 0); \
}
/*
* Releases a reference to a policy descriptor. When the last
* reference is released, the descriptor is freed.
*/
#define KCF_POLICY_REFRELE(desc) { \
ASSERT((desc)->pd_refcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(desc)->pd_refcnt, -1) == 0) \
kcf_policy_free_desc(desc); \
}
/*
* This entry stores the name of a software module and its
* mechanisms. The mechanisms are 'hints' that are used to
* trigger loading of the module.
*/
typedef struct kcf_soft_conf_entry {
struct kcf_soft_conf_entry *ce_next;
char *ce_name;
crypto_mech_name_t *ce_mechs;
uint_t ce_count;
} kcf_soft_conf_entry_t;
extern kmutex_t soft_config_mutex;
extern kcf_soft_conf_entry_t *soft_config_list;
/*
* Global tables. The sizes are from the predefined PKCS#11 v2.20 mechanisms,
* with a margin of few extra empty entry points
*/
#define KCF_MAXDIGEST 16 /* Digests */
#define KCF_MAXCIPHER 64 /* Ciphers */
#define KCF_MAXMAC 40 /* Message authentication codes */
#define KCF_MAXSIGN 24 /* Sign/Verify */
#define KCF_MAXKEYOPS 116 /* Key generation and derivation */
#define KCF_MAXMISC 16 /* Others ... */
#define KCF_MAXMECHS KCF_MAXDIGEST + KCF_MAXCIPHER + KCF_MAXMAC + \
KCF_MAXSIGN + KCF_MAXKEYOPS + \
KCF_MAXMISC
extern kcf_mech_entry_t kcf_digest_mechs_tab[];
extern kcf_mech_entry_t kcf_cipher_mechs_tab[];
extern kcf_mech_entry_t kcf_mac_mechs_tab[];
extern kcf_mech_entry_t kcf_sign_mechs_tab[];
extern kcf_mech_entry_t kcf_keyops_mechs_tab[];
extern kcf_mech_entry_t kcf_misc_mechs_tab[];
extern kmutex_t kcf_mech_tabs_lock;
typedef enum {
KCF_DIGEST_CLASS = 1,
KCF_CIPHER_CLASS,
KCF_MAC_CLASS,
KCF_SIGN_CLASS,
KCF_KEYOPS_CLASS,
KCF_MISC_CLASS
} kcf_ops_class_t;
#define KCF_FIRST_OPSCLASS KCF_DIGEST_CLASS
#define KCF_LAST_OPSCLASS KCF_MISC_CLASS
/* The table of all the kcf_xxx_mech_tab[]s, indexed by kcf_ops_class */
typedef struct kcf_mech_entry_tab {
int met_size; /* Size of the met_tab[] */
kcf_mech_entry_t *met_tab; /* the table */
} kcf_mech_entry_tab_t;
extern kcf_mech_entry_tab_t kcf_mech_tabs_tab[];
#define KCF_MECHID(class, index) \
(((crypto_mech_type_t)(class) << 32) | (crypto_mech_type_t)(index))
#define KCF_MECH2CLASS(mech_type) ((kcf_ops_class_t)((mech_type) >> 32))
#define KCF_MECH2INDEX(mech_type) ((int)(mech_type))
#define KCF_TO_PROV_MECH_INDX(pd, mech_type) \
((pd)->pd_mech_indx[KCF_MECH2CLASS(mech_type)] \
[KCF_MECH2INDEX(mech_type)])
#define KCF_TO_PROV_MECHINFO(pd, mech_type) \
((pd)->pd_mechanisms[KCF_TO_PROV_MECH_INDX(pd, mech_type)])
#define KCF_TO_PROV_MECHNUM(pd, mech_type) \
(KCF_TO_PROV_MECHINFO(pd, mech_type).cm_mech_number)
#define KCF_CAN_SHARE_OPSTATE(pd, mech_type) \
((KCF_TO_PROV_MECHINFO(pd, mech_type).cm_mech_flags) & \
CRYPTO_CAN_SHARE_OPSTATE)
/* ps_refcnt is protected by cm_lock in the crypto_minor structure */
typedef struct crypto_provider_session {
struct crypto_provider_session *ps_next;
crypto_session_id_t ps_session;
kcf_provider_desc_t *ps_provider;
kcf_provider_desc_t *ps_real_provider;
uint_t ps_refcnt;
} crypto_provider_session_t;
typedef struct crypto_session_data {
kmutex_t sd_lock;
kcondvar_t sd_cv;
uint32_t sd_flags;
int sd_pre_approved_amount;
crypto_ctx_t *sd_digest_ctx;
crypto_ctx_t *sd_encr_ctx;
crypto_ctx_t *sd_decr_ctx;
crypto_ctx_t *sd_sign_ctx;
crypto_ctx_t *sd_verify_ctx;
crypto_ctx_t *sd_sign_recover_ctx;
crypto_ctx_t *sd_verify_recover_ctx;
kcf_provider_desc_t *sd_provider;
void *sd_find_init_cookie;
crypto_provider_session_t *sd_provider_session;
} crypto_session_data_t;
#define CRYPTO_SESSION_IN_USE 0x00000001
#define CRYPTO_SESSION_IS_BUSY 0x00000002
#define CRYPTO_SESSION_IS_CLOSED 0x00000004
#define KCF_MAX_PIN_LEN 1024
/*
* Per-minor info.
*
* cm_lock protects everything in this structure except for cm_refcnt.
*/
typedef struct crypto_minor {
uint_t cm_refcnt;
kmutex_t cm_lock;
kcondvar_t cm_cv;
crypto_session_data_t **cm_session_table;
uint_t cm_session_table_count;
kcf_provider_desc_t **cm_provider_array;
uint_t cm_provider_count;
crypto_provider_session_t *cm_provider_session;
} crypto_minor_t;
/*
* Return codes for internal functions
*/
#define KCF_SUCCESS 0x0 /* Successful call */
#define KCF_INVALID_MECH_NUMBER 0x1 /* invalid mechanism number */
#define KCF_INVALID_MECH_NAME 0x2 /* invalid mechanism name */
#define KCF_INVALID_MECH_CLASS 0x3 /* invalid mechanism class */
#define KCF_MECH_TAB_FULL 0x4 /* Need more room in the mech tabs. */
#define KCF_INVALID_INDX ((ushort_t)-1)
/*
* kCF internal mechanism and function group for tracking RNG providers.
*/
#define SUN_RANDOM "random"
#define CRYPTO_FG_RANDOM 0x80000000 /* generate_random() */
/*
* Wrappers for ops vectors. In the wrapper definitions below, the pd
* argument always corresponds to a pointer to a provider descriptor
* of type kcf_prov_desc_t.
*/
#define KCF_PROV_CONTROL_OPS(pd) ((pd)->pd_ops_vector->co_control_ops)
#define KCF_PROV_CTX_OPS(pd) ((pd)->pd_ops_vector->co_ctx_ops)
#define KCF_PROV_DIGEST_OPS(pd) ((pd)->pd_ops_vector->co_digest_ops)
#define KCF_PROV_CIPHER_OPS(pd) ((pd)->pd_ops_vector->co_cipher_ops)
#define KCF_PROV_MAC_OPS(pd) ((pd)->pd_ops_vector->co_mac_ops)
#define KCF_PROV_SIGN_OPS(pd) ((pd)->pd_ops_vector->co_sign_ops)
#define KCF_PROV_VERIFY_OPS(pd) ((pd)->pd_ops_vector->co_verify_ops)
#define KCF_PROV_DUAL_OPS(pd) ((pd)->pd_ops_vector->co_dual_ops)
#define KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) \
((pd)->pd_ops_vector->co_dual_cipher_mac_ops)
#define KCF_PROV_RANDOM_OPS(pd) ((pd)->pd_ops_vector->co_random_ops)
#define KCF_PROV_SESSION_OPS(pd) ((pd)->pd_ops_vector->co_session_ops)
#define KCF_PROV_OBJECT_OPS(pd) ((pd)->pd_ops_vector->co_object_ops)
#define KCF_PROV_KEY_OPS(pd) ((pd)->pd_ops_vector->co_key_ops)
#define KCF_PROV_PROVIDER_OPS(pd) ((pd)->pd_ops_vector->co_provider_ops)
#define KCF_PROV_MECH_OPS(pd) ((pd)->pd_ops_vector->co_mech_ops)
#define KCF_PROV_NOSTORE_KEY_OPS(pd) \
((pd)->pd_ops_vector->co_nostore_key_ops)
/*
* Wrappers for crypto_control_ops(9S) entry points.
*/
#define KCF_PROV_STATUS(pd, status) ( \
(KCF_PROV_CONTROL_OPS(pd) && \
KCF_PROV_CONTROL_OPS(pd)->provider_status) ? \
KCF_PROV_CONTROL_OPS(pd)->provider_status( \
(pd)->pd_prov_handle, status) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_ctx_ops(9S) entry points.
*/
#define KCF_PROV_CREATE_CTX_TEMPLATE(pd, mech, key, template, size, req) ( \
(KCF_PROV_CTX_OPS(pd) && KCF_PROV_CTX_OPS(pd)->create_ctx_template) ? \
KCF_PROV_CTX_OPS(pd)->create_ctx_template( \
(pd)->pd_prov_handle, mech, key, template, size, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_FREE_CONTEXT(pd, ctx) ( \
(KCF_PROV_CTX_OPS(pd) && KCF_PROV_CTX_OPS(pd)->free_context) ? \
KCF_PROV_CTX_OPS(pd)->free_context(ctx) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_COPYIN_MECH(pd, umech, kmech, errorp, mode) ( \
(KCF_PROV_MECH_OPS(pd) && KCF_PROV_MECH_OPS(pd)->copyin_mechanism) ? \
KCF_PROV_MECH_OPS(pd)->copyin_mechanism( \
(pd)->pd_prov_handle, umech, kmech, errorp, mode) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_COPYOUT_MECH(pd, kmech, umech, errorp, mode) ( \
(KCF_PROV_MECH_OPS(pd) && KCF_PROV_MECH_OPS(pd)->copyout_mechanism) ? \
KCF_PROV_MECH_OPS(pd)->copyout_mechanism( \
(pd)->pd_prov_handle, kmech, umech, errorp, mode) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_FREE_MECH(pd, prov_mech) ( \
(KCF_PROV_MECH_OPS(pd) && KCF_PROV_MECH_OPS(pd)->free_mechanism) ? \
KCF_PROV_MECH_OPS(pd)->free_mechanism( \
(pd)->pd_prov_handle, prov_mech) : CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_digest_ops(9S) entry points.
*/
#define KCF_PROV_DIGEST_INIT(pd, ctx, mech, req) ( \
(KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest_init) ? \
KCF_PROV_DIGEST_OPS(pd)->digest_init(ctx, mech, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* The _ (underscore) in _digest is needed to avoid replacing the
* function digest().
*/
#define KCF_PROV_DIGEST(pd, ctx, data, _digest, req) ( \
(KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest) ? \
KCF_PROV_DIGEST_OPS(pd)->digest(ctx, data, _digest, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DIGEST_UPDATE(pd, ctx, data, req) ( \
(KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest_update) ? \
KCF_PROV_DIGEST_OPS(pd)->digest_update(ctx, data, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DIGEST_KEY(pd, ctx, key, req) ( \
(KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest_key) ? \
KCF_PROV_DIGEST_OPS(pd)->digest_key(ctx, key, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DIGEST_FINAL(pd, ctx, digest, req) ( \
(KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest_final) ? \
KCF_PROV_DIGEST_OPS(pd)->digest_final(ctx, digest, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DIGEST_ATOMIC(pd, session, mech, data, digest, req) ( \
(KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest_atomic) ? \
KCF_PROV_DIGEST_OPS(pd)->digest_atomic( \
(pd)->pd_prov_handle, session, mech, data, digest, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_cipher_ops(9S) entry points.
*/
#define KCF_PROV_ENCRYPT_INIT(pd, ctx, mech, key, template, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_init) ? \
KCF_PROV_CIPHER_OPS(pd)->encrypt_init(ctx, mech, key, template, \
req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT(pd, ctx, plaintext, ciphertext, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt) ? \
KCF_PROV_CIPHER_OPS(pd)->encrypt(ctx, plaintext, ciphertext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_UPDATE(pd, ctx, plaintext, ciphertext, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_update) ? \
KCF_PROV_CIPHER_OPS(pd)->encrypt_update(ctx, plaintext, \
ciphertext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_FINAL(pd, ctx, ciphertext, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_final) ? \
KCF_PROV_CIPHER_OPS(pd)->encrypt_final(ctx, ciphertext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_ATOMIC(pd, session, mech, key, plaintext, ciphertext, \
template, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_atomic) ? \
KCF_PROV_CIPHER_OPS(pd)->encrypt_atomic( \
(pd)->pd_prov_handle, session, mech, key, plaintext, ciphertext, \
template, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT_INIT(pd, ctx, mech, key, template, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->decrypt_init) ? \
KCF_PROV_CIPHER_OPS(pd)->decrypt_init(ctx, mech, key, template, \
req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT(pd, ctx, ciphertext, plaintext, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->decrypt) ? \
KCF_PROV_CIPHER_OPS(pd)->decrypt(ctx, ciphertext, plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT_UPDATE(pd, ctx, ciphertext, plaintext, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->decrypt_update) ? \
KCF_PROV_CIPHER_OPS(pd)->decrypt_update(ctx, ciphertext, \
plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT_FINAL(pd, ctx, plaintext, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->decrypt_final) ? \
KCF_PROV_CIPHER_OPS(pd)->decrypt_final(ctx, plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT_ATOMIC(pd, session, mech, key, ciphertext, plaintext, \
template, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->decrypt_atomic) ? \
KCF_PROV_CIPHER_OPS(pd)->decrypt_atomic( \
(pd)->pd_prov_handle, session, mech, key, ciphertext, plaintext, \
template, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_mac_ops(9S) entry points.
*/
#define KCF_PROV_MAC_INIT(pd, ctx, mech, key, template, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_init) ? \
KCF_PROV_MAC_OPS(pd)->mac_init(ctx, mech, key, template, req) \
: CRYPTO_NOT_SUPPORTED)
/*
* The _ (underscore) in _mac is needed to avoid replacing the
* function mac().
*/
#define KCF_PROV_MAC(pd, ctx, data, _mac, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac) ? \
KCF_PROV_MAC_OPS(pd)->mac(ctx, data, _mac, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_UPDATE(pd, ctx, data, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_update) ? \
KCF_PROV_MAC_OPS(pd)->mac_update(ctx, data, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_FINAL(pd, ctx, mac, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_final) ? \
KCF_PROV_MAC_OPS(pd)->mac_final(ctx, mac, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_ATOMIC(pd, session, mech, key, data, mac, template, \
req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_atomic) ? \
KCF_PROV_MAC_OPS(pd)->mac_atomic( \
(pd)->pd_prov_handle, session, mech, key, data, mac, template, \
req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_VERIFY_ATOMIC(pd, session, mech, key, data, mac, \
template, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_verify_atomic) ? \
KCF_PROV_MAC_OPS(pd)->mac_verify_atomic( \
(pd)->pd_prov_handle, session, mech, key, data, mac, template, \
req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_sign_ops(9S) entry points.
*/
#define KCF_PROV_SIGN_INIT(pd, ctx, mech, key, template, req) ( \
(KCF_PROV_SIGN_OPS(pd) && KCF_PROV_SIGN_OPS(pd)->sign_init) ? \
KCF_PROV_SIGN_OPS(pd)->sign_init( \
ctx, mech, key, template, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN(pd, ctx, data, sig, req) ( \
(KCF_PROV_SIGN_OPS(pd) && KCF_PROV_SIGN_OPS(pd)->sign) ? \
KCF_PROV_SIGN_OPS(pd)->sign(ctx, data, sig, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN_UPDATE(pd, ctx, data, req) ( \
(KCF_PROV_SIGN_OPS(pd) && KCF_PROV_SIGN_OPS(pd)->sign_update) ? \
KCF_PROV_SIGN_OPS(pd)->sign_update(ctx, data, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN_FINAL(pd, ctx, sig, req) ( \
(KCF_PROV_SIGN_OPS(pd) && KCF_PROV_SIGN_OPS(pd)->sign_final) ? \
KCF_PROV_SIGN_OPS(pd)->sign_final(ctx, sig, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN_ATOMIC(pd, session, mech, key, data, template, \
sig, req) ( \
(KCF_PROV_SIGN_OPS(pd) && KCF_PROV_SIGN_OPS(pd)->sign_atomic) ? \
KCF_PROV_SIGN_OPS(pd)->sign_atomic( \
(pd)->pd_prov_handle, session, mech, key, data, sig, template, \
req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN_RECOVER_INIT(pd, ctx, mech, key, template, \
req) ( \
(KCF_PROV_SIGN_OPS(pd) && KCF_PROV_SIGN_OPS(pd)->sign_recover_init) ? \
KCF_PROV_SIGN_OPS(pd)->sign_recover_init(ctx, mech, key, template, \
req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN_RECOVER(pd, ctx, data, sig, req) ( \
(KCF_PROV_SIGN_OPS(pd) && KCF_PROV_SIGN_OPS(pd)->sign_recover) ? \
KCF_PROV_SIGN_OPS(pd)->sign_recover(ctx, data, sig, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN_RECOVER_ATOMIC(pd, session, mech, key, data, template, \
sig, req) ( \
(KCF_PROV_SIGN_OPS(pd) && \
KCF_PROV_SIGN_OPS(pd)->sign_recover_atomic) ? \
KCF_PROV_SIGN_OPS(pd)->sign_recover_atomic( \
(pd)->pd_prov_handle, session, mech, key, data, sig, template, \
req) : CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_verify_ops(9S) entry points.
*/
#define KCF_PROV_VERIFY_INIT(pd, ctx, mech, key, template, req) ( \
(KCF_PROV_VERIFY_OPS(pd) && KCF_PROV_VERIFY_OPS(pd)->verify_init) ? \
KCF_PROV_VERIFY_OPS(pd)->verify_init(ctx, mech, key, template, \
req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_VERIFY(pd, ctx, data, sig, req) ( \
(KCF_PROV_VERIFY_OPS(pd) && KCF_PROV_VERIFY_OPS(pd)->do_verify) ? \
KCF_PROV_VERIFY_OPS(pd)->do_verify(ctx, data, sig, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_VERIFY_UPDATE(pd, ctx, data, req) ( \
(KCF_PROV_VERIFY_OPS(pd) && KCF_PROV_VERIFY_OPS(pd)->verify_update) ? \
KCF_PROV_VERIFY_OPS(pd)->verify_update(ctx, data, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_VERIFY_FINAL(pd, ctx, sig, req) ( \
(KCF_PROV_VERIFY_OPS(pd) && KCF_PROV_VERIFY_OPS(pd)->verify_final) ? \
KCF_PROV_VERIFY_OPS(pd)->verify_final(ctx, sig, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_VERIFY_ATOMIC(pd, session, mech, key, data, template, sig, \
req) ( \
(KCF_PROV_VERIFY_OPS(pd) && KCF_PROV_VERIFY_OPS(pd)->verify_atomic) ? \
KCF_PROV_VERIFY_OPS(pd)->verify_atomic( \
(pd)->pd_prov_handle, session, mech, key, data, sig, template, \
req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_VERIFY_RECOVER_INIT(pd, ctx, mech, key, template, \
req) ( \
(KCF_PROV_VERIFY_OPS(pd) && \
KCF_PROV_VERIFY_OPS(pd)->verify_recover_init) ? \
KCF_PROV_VERIFY_OPS(pd)->verify_recover_init(ctx, mech, key, \
template, req) : CRYPTO_NOT_SUPPORTED)
/* verify_recover() CSPI routine has different argument order than verify() */
#define KCF_PROV_VERIFY_RECOVER(pd, ctx, sig, data, req) ( \
(KCF_PROV_VERIFY_OPS(pd) && KCF_PROV_VERIFY_OPS(pd)->verify_recover) ? \
KCF_PROV_VERIFY_OPS(pd)->verify_recover(ctx, sig, data, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* verify_recover_atomic() CSPI routine has different argument order
* than verify_atomic().
*/
#define KCF_PROV_VERIFY_RECOVER_ATOMIC(pd, session, mech, key, sig, \
template, data, req) ( \
(KCF_PROV_VERIFY_OPS(pd) && \
KCF_PROV_VERIFY_OPS(pd)->verify_recover_atomic) ? \
KCF_PROV_VERIFY_OPS(pd)->verify_recover_atomic( \
(pd)->pd_prov_handle, session, mech, key, sig, data, template, \
req) : CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_dual_ops(9S) entry points.
*/
#define KCF_PROV_DIGEST_ENCRYPT_UPDATE(digest_ctx, encrypt_ctx, plaintext, \
ciphertext, req) ( \
(KCF_PROV_DUAL_OPS(pd) && \
KCF_PROV_DUAL_OPS(pd)->digest_encrypt_update) ? \
KCF_PROV_DUAL_OPS(pd)->digest_encrypt_update( \
digest_ctx, encrypt_ctx, plaintext, ciphertext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT_DIGEST_UPDATE(decrypt_ctx, digest_ctx, ciphertext, \
plaintext, req) ( \
(KCF_PROV_DUAL_OPS(pd) && \
KCF_PROV_DUAL_OPS(pd)->decrypt_digest_update) ? \
KCF_PROV_DUAL_OPS(pd)->decrypt_digest_update( \
decrypt_ctx, digest_ctx, ciphertext, plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SIGN_ENCRYPT_UPDATE(sign_ctx, encrypt_ctx, plaintext, \
ciphertext, req) ( \
(KCF_PROV_DUAL_OPS(pd) && \
KCF_PROV_DUAL_OPS(pd)->sign_encrypt_update) ? \
KCF_PROV_DUAL_OPS(pd)->sign_encrypt_update( \
sign_ctx, encrypt_ctx, plaintext, ciphertext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT_VERIFY_UPDATE(decrypt_ctx, verify_ctx, ciphertext, \
plaintext, req) ( \
(KCF_PROV_DUAL_OPS(pd) && \
KCF_PROV_DUAL_OPS(pd)->decrypt_verify_update) ? \
KCF_PROV_DUAL_OPS(pd)->decrypt_verify_update( \
decrypt_ctx, verify_ctx, ciphertext, plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_dual_cipher_mac_ops(9S) entry points.
*/
#define KCF_PROV_ENCRYPT_MAC_INIT(pd, ctx, encr_mech, encr_key, mac_mech, \
mac_key, encr_ctx_template, mac_ctx_template, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_init) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_init( \
ctx, encr_mech, encr_key, mac_mech, mac_key, encr_ctx_template, \
mac_ctx_template, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_MAC(pd, ctx, plaintext, ciphertext, mac, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac( \
ctx, plaintext, ciphertext, mac, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_MAC_UPDATE(pd, ctx, plaintext, ciphertext, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_update) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_update( \
ctx, plaintext, ciphertext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_MAC_FINAL(pd, ctx, ciphertext, mac, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_final) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_final( \
ctx, ciphertext, mac, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_MAC_ATOMIC(pd, session, encr_mech, encr_key, \
mac_mech, mac_key, plaintext, ciphertext, mac, \
encr_ctx_template, mac_ctx_template, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_atomic) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->encrypt_mac_atomic( \
(pd)->pd_prov_handle, session, encr_mech, encr_key, \
mac_mech, mac_key, plaintext, ciphertext, mac, \
encr_ctx_template, mac_ctx_template, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_DECRYPT_INIT(pd, ctx, mac_mech, mac_key, decr_mech, \
decr_key, mac_ctx_template, decr_ctx_template, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_init) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_init( \
ctx, mac_mech, mac_key, decr_mech, decr_key, mac_ctx_template, \
decr_ctx_template, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_DECRYPT(pd, ctx, ciphertext, mac, plaintext, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt( \
ctx, ciphertext, mac, plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_DECRYPT_UPDATE(pd, ctx, ciphertext, plaintext, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_update) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_update( \
ctx, ciphertext, plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_DECRYPT_FINAL(pd, ctx, mac, plaintext, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_final) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_final( \
ctx, mac, plaintext, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_DECRYPT_ATOMIC(pd, session, mac_mech, mac_key, \
decr_mech, decr_key, ciphertext, mac, plaintext, \
mac_ctx_template, decr_ctx_template, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_atomic) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_decrypt_atomic( \
(pd)->pd_prov_handle, session, mac_mech, mac_key, \
decr_mech, decr_key, ciphertext, mac, plaintext, \
mac_ctx_template, decr_ctx_template, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_VERIFY_DECRYPT_ATOMIC(pd, session, mac_mech, mac_key, \
decr_mech, decr_key, ciphertext, mac, plaintext, \
mac_ctx_template, decr_ctx_template, req) ( \
(KCF_PROV_DUAL_CIPHER_MAC_OPS(pd) && \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_verify_decrypt_atomic \
!= NULL) ? \
KCF_PROV_DUAL_CIPHER_MAC_OPS(pd)->mac_verify_decrypt_atomic( \
(pd)->pd_prov_handle, session, mac_mech, mac_key, \
decr_mech, decr_key, ciphertext, mac, plaintext, \
mac_ctx_template, decr_ctx_template, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_random_number_ops(9S) entry points.
*/
#define KCF_PROV_SEED_RANDOM(pd, session, buf, len, est, flags, req) ( \
(KCF_PROV_RANDOM_OPS(pd) && KCF_PROV_RANDOM_OPS(pd)->seed_random) ? \
KCF_PROV_RANDOM_OPS(pd)->seed_random((pd)->pd_prov_handle, \
session, buf, len, est, flags, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_GENERATE_RANDOM(pd, session, buf, len, req) ( \
(KCF_PROV_RANDOM_OPS(pd) && \
KCF_PROV_RANDOM_OPS(pd)->generate_random) ? \
KCF_PROV_RANDOM_OPS(pd)->generate_random((pd)->pd_prov_handle, \
session, buf, len, req) : CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_session_ops(9S) entry points.
*
* ops_pd is the provider descriptor that supplies the ops_vector.
* pd is the descriptor that supplies the provider handle.
* Only session open/close needs two handles.
*/
#define KCF_PROV_SESSION_OPEN(ops_pd, session, req, pd) ( \
(KCF_PROV_SESSION_OPS(ops_pd) && \
KCF_PROV_SESSION_OPS(ops_pd)->session_open) ? \
KCF_PROV_SESSION_OPS(ops_pd)->session_open((pd)->pd_prov_handle, \
session, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SESSION_CLOSE(ops_pd, session, req, pd) ( \
(KCF_PROV_SESSION_OPS(ops_pd) && \
KCF_PROV_SESSION_OPS(ops_pd)->session_close) ? \
KCF_PROV_SESSION_OPS(ops_pd)->session_close((pd)->pd_prov_handle, \
session, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SESSION_LOGIN(pd, session, user_type, pin, len, req) ( \
(KCF_PROV_SESSION_OPS(pd) && \
KCF_PROV_SESSION_OPS(pd)->session_login) ? \
KCF_PROV_SESSION_OPS(pd)->session_login((pd)->pd_prov_handle, \
session, user_type, pin, len, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SESSION_LOGOUT(pd, session, req) ( \
(KCF_PROV_SESSION_OPS(pd) && \
KCF_PROV_SESSION_OPS(pd)->session_logout) ? \
KCF_PROV_SESSION_OPS(pd)->session_logout((pd)->pd_prov_handle, \
session, req) : CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_object_ops(9S) entry points.
*/
#define KCF_PROV_OBJECT_CREATE(pd, session, template, count, object, req) ( \
(KCF_PROV_OBJECT_OPS(pd) && KCF_PROV_OBJECT_OPS(pd)->object_create) ? \
KCF_PROV_OBJECT_OPS(pd)->object_create((pd)->pd_prov_handle, \
session, template, count, object, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_COPY(pd, session, object, template, count, \
new_object, req) ( \
(KCF_PROV_OBJECT_OPS(pd) && KCF_PROV_OBJECT_OPS(pd)->object_copy) ? \
KCF_PROV_OBJECT_OPS(pd)->object_copy((pd)->pd_prov_handle, \
session, object, template, count, new_object, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_DESTROY(pd, session, object, req) ( \
(KCF_PROV_OBJECT_OPS(pd) && KCF_PROV_OBJECT_OPS(pd)->object_destroy) ? \
KCF_PROV_OBJECT_OPS(pd)->object_destroy((pd)->pd_prov_handle, \
session, object, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_GET_SIZE(pd, session, object, size, req) ( \
(KCF_PROV_OBJECT_OPS(pd) && \
KCF_PROV_OBJECT_OPS(pd)->object_get_size) ? \
KCF_PROV_OBJECT_OPS(pd)->object_get_size((pd)->pd_prov_handle, \
session, object, size, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_GET_ATTRIBUTE_VALUE(pd, session, object, template, \
count, req) ( \
(KCF_PROV_OBJECT_OPS(pd) && \
KCF_PROV_OBJECT_OPS(pd)->object_get_attribute_value) ? \
KCF_PROV_OBJECT_OPS(pd)->object_get_attribute_value( \
(pd)->pd_prov_handle, session, object, template, count, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_SET_ATTRIBUTE_VALUE(pd, session, object, template, \
count, req) ( \
(KCF_PROV_OBJECT_OPS(pd) && \
KCF_PROV_OBJECT_OPS(pd)->object_set_attribute_value) ? \
KCF_PROV_OBJECT_OPS(pd)->object_set_attribute_value( \
(pd)->pd_prov_handle, session, object, template, count, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_FIND_INIT(pd, session, template, count, ppriv, \
req) ( \
(KCF_PROV_OBJECT_OPS(pd) && \
KCF_PROV_OBJECT_OPS(pd)->object_find_init) ? \
KCF_PROV_OBJECT_OPS(pd)->object_find_init((pd)->pd_prov_handle, \
session, template, count, ppriv, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_FIND(pd, ppriv, objects, max_objects, object_count, \
req) ( \
(KCF_PROV_OBJECT_OPS(pd) && KCF_PROV_OBJECT_OPS(pd)->object_find) ? \
KCF_PROV_OBJECT_OPS(pd)->object_find( \
(pd)->pd_prov_handle, ppriv, objects, max_objects, object_count, \
req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_OBJECT_FIND_FINAL(pd, ppriv, req) ( \
(KCF_PROV_OBJECT_OPS(pd) && \
KCF_PROV_OBJECT_OPS(pd)->object_find_final) ? \
KCF_PROV_OBJECT_OPS(pd)->object_find_final( \
(pd)->pd_prov_handle, ppriv, req) : CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_key_ops(9S) entry points.
*/
#define KCF_PROV_KEY_GENERATE(pd, session, mech, template, count, object, \
req) ( \
(KCF_PROV_KEY_OPS(pd) && KCF_PROV_KEY_OPS(pd)->key_generate) ? \
KCF_PROV_KEY_OPS(pd)->key_generate((pd)->pd_prov_handle, \
session, mech, template, count, object, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_KEY_GENERATE_PAIR(pd, session, mech, pub_template, \
pub_count, priv_template, priv_count, pub_key, priv_key, req) ( \
(KCF_PROV_KEY_OPS(pd) && KCF_PROV_KEY_OPS(pd)->key_generate_pair) ? \
KCF_PROV_KEY_OPS(pd)->key_generate_pair((pd)->pd_prov_handle, \
session, mech, pub_template, pub_count, priv_template, \
priv_count, pub_key, priv_key, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_KEY_WRAP(pd, session, mech, wrapping_key, key, wrapped_key, \
wrapped_key_len, req) ( \
(KCF_PROV_KEY_OPS(pd) && KCF_PROV_KEY_OPS(pd)->key_wrap) ? \
KCF_PROV_KEY_OPS(pd)->key_wrap((pd)->pd_prov_handle, \
session, mech, wrapping_key, key, wrapped_key, wrapped_key_len, \
req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_KEY_UNWRAP(pd, session, mech, unwrapping_key, wrapped_key, \
wrapped_key_len, template, count, key, req) ( \
(KCF_PROV_KEY_OPS(pd) && KCF_PROV_KEY_OPS(pd)->key_unwrap) ? \
KCF_PROV_KEY_OPS(pd)->key_unwrap((pd)->pd_prov_handle, \
session, mech, unwrapping_key, wrapped_key, wrapped_key_len, \
template, count, key, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_KEY_DERIVE(pd, session, mech, base_key, template, count, \
key, req) ( \
(KCF_PROV_KEY_OPS(pd) && KCF_PROV_KEY_OPS(pd)->key_derive) ? \
KCF_PROV_KEY_OPS(pd)->key_derive((pd)->pd_prov_handle, \
session, mech, base_key, template, count, key, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_KEY_CHECK(pd, mech, key) ( \
(KCF_PROV_KEY_OPS(pd) && KCF_PROV_KEY_OPS(pd)->key_check) ? \
KCF_PROV_KEY_OPS(pd)->key_check((pd)->pd_prov_handle, mech, key) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_provider_management_ops(9S) entry points.
*
* ops_pd is the provider descriptor that supplies the ops_vector.
* pd is the descriptor that supplies the provider handle.
* Only ext_info needs two handles.
*/
#define KCF_PROV_EXT_INFO(ops_pd, provext_info, req, pd) ( \
(KCF_PROV_PROVIDER_OPS(ops_pd) && \
KCF_PROV_PROVIDER_OPS(ops_pd)->ext_info) ? \
KCF_PROV_PROVIDER_OPS(ops_pd)->ext_info((pd)->pd_prov_handle, \
provext_info, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_INIT_TOKEN(pd, pin, pin_len, label, req) ( \
(KCF_PROV_PROVIDER_OPS(pd) && KCF_PROV_PROVIDER_OPS(pd)->init_token) ? \
KCF_PROV_PROVIDER_OPS(pd)->init_token((pd)->pd_prov_handle, \
pin, pin_len, label, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_INIT_PIN(pd, session, pin, pin_len, req) ( \
(KCF_PROV_PROVIDER_OPS(pd) && KCF_PROV_PROVIDER_OPS(pd)->init_pin) ? \
KCF_PROV_PROVIDER_OPS(pd)->init_pin((pd)->pd_prov_handle, \
session, pin, pin_len, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_SET_PIN(pd, session, old_pin, old_len, new_pin, new_len, \
req) ( \
(KCF_PROV_PROVIDER_OPS(pd) && KCF_PROV_PROVIDER_OPS(pd)->set_pin) ? \
KCF_PROV_PROVIDER_OPS(pd)->set_pin((pd)->pd_prov_handle, \
session, old_pin, old_len, new_pin, new_len, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_nostore_key_ops(9S) entry points.
*/
#define KCF_PROV_NOSTORE_KEY_GENERATE(pd, session, mech, template, count, \
out_template, out_count, req) ( \
(KCF_PROV_NOSTORE_KEY_OPS(pd) && \
KCF_PROV_NOSTORE_KEY_OPS(pd)->nostore_key_generate) ? \
KCF_PROV_NOSTORE_KEY_OPS(pd)->nostore_key_generate( \
(pd)->pd_prov_handle, session, mech, template, count, \
out_template, out_count, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_NOSTORE_KEY_GENERATE_PAIR(pd, session, mech, pub_template, \
pub_count, priv_template, priv_count, out_pub_template, \
out_pub_count, out_priv_template, out_priv_count, req) ( \
(KCF_PROV_NOSTORE_KEY_OPS(pd) && \
KCF_PROV_NOSTORE_KEY_OPS(pd)->nostore_key_generate_pair) ? \
KCF_PROV_NOSTORE_KEY_OPS(pd)->nostore_key_generate_pair( \
(pd)->pd_prov_handle, session, mech, pub_template, pub_count, \
priv_template, priv_count, out_pub_template, out_pub_count, \
out_priv_template, out_priv_count, req) : CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_NOSTORE_KEY_DERIVE(pd, session, mech, base_key, template, \
count, out_template, out_count, req) ( \
(KCF_PROV_NOSTORE_KEY_OPS(pd) && \
KCF_PROV_NOSTORE_KEY_OPS(pd)->nostore_key_derive) ? \
KCF_PROV_NOSTORE_KEY_OPS(pd)->nostore_key_derive( \
(pd)->pd_prov_handle, session, mech, base_key, template, count, \
out_template, out_count, req) : CRYPTO_NOT_SUPPORTED)
/*
* The following routines are exported by the kcf module (/kernel/misc/kcf)
* to the crypto and cryptoadmin modules.
*/
/* Digest/mac/cipher entry points that take a provider descriptor and session */
extern int crypto_digest_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
extern int crypto_mac_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
extern int crypto_encrypt_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
extern int crypto_decrypt_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
/* Other private digest/mac/cipher entry points not exported through k-API */
extern int crypto_digest_key_prov(crypto_context_t, crypto_key_t *,
crypto_call_req_t *);
/* Private sign entry points exported by KCF */
extern int crypto_sign_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
extern int crypto_sign_recover_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
/* Private verify entry points exported by KCF */
extern int crypto_verify_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
extern int crypto_verify_recover_single(crypto_context_t, crypto_data_t *,
crypto_data_t *, crypto_call_req_t *);
/* Private dual operations entry points exported by KCF */
extern int crypto_digest_encrypt_update(crypto_context_t, crypto_context_t,
crypto_data_t *, crypto_data_t *, crypto_call_req_t *);
extern int crypto_decrypt_digest_update(crypto_context_t, crypto_context_t,
crypto_data_t *, crypto_data_t *, crypto_call_req_t *);
extern int crypto_sign_encrypt_update(crypto_context_t, crypto_context_t,
crypto_data_t *, crypto_data_t *, crypto_call_req_t *);
extern int crypto_decrypt_verify_update(crypto_context_t, crypto_context_t,
crypto_data_t *, crypto_data_t *, crypto_call_req_t *);
/* Random Number Generation */
int crypto_seed_random(crypto_provider_handle_t provider, uchar_t *buf,
size_t len, crypto_call_req_t *req);
int crypto_generate_random(crypto_provider_handle_t provider, uchar_t *buf,
size_t len, crypto_call_req_t *req);
/* Provider Management */
int crypto_get_provider_info(crypto_provider_id_t id,
crypto_provider_info_t **info, crypto_call_req_t *req);
int crypto_get_provider_mechanisms(crypto_minor_t *, crypto_provider_id_t id,
uint_t *count, crypto_mech_name_t **list);
int crypto_init_token(crypto_provider_handle_t provider, char *pin,
size_t pin_len, char *label, crypto_call_req_t *);
int crypto_init_pin(crypto_provider_handle_t provider, char *pin,
size_t pin_len, crypto_call_req_t *req);
int crypto_set_pin(crypto_provider_handle_t provider, char *old_pin,
size_t old_len, char *new_pin, size_t new_len, crypto_call_req_t *req);
void crypto_free_provider_list(crypto_provider_entry_t *list, uint_t count);
void crypto_free_provider_info(crypto_provider_info_t *info);
/* Administrative */
int crypto_get_dev_list(uint_t *count, crypto_dev_list_entry_t **list);
int crypto_get_soft_list(uint_t *count, char **list, size_t *len);
int crypto_get_dev_info(char *name, uint_t instance, uint_t *count,
crypto_mech_name_t **list);
int crypto_get_soft_info(caddr_t name, uint_t *count,
crypto_mech_name_t **list);
int crypto_load_dev_disabled(char *name, uint_t instance, uint_t count,
crypto_mech_name_t *list);
int crypto_load_soft_disabled(caddr_t name, uint_t count,
crypto_mech_name_t *list);
int crypto_unload_soft_module(caddr_t path);
int crypto_load_soft_config(caddr_t name, uint_t count,
crypto_mech_name_t *list);
int crypto_load_door(uint_t did);
void crypto_free_mech_list(crypto_mech_name_t *list, uint_t count);
void crypto_free_dev_list(crypto_dev_list_entry_t *list, uint_t count);
/* Miscellaneous */
int crypto_get_mechanism_number(caddr_t name, crypto_mech_type_t *number);
int crypto_get_function_list(crypto_provider_id_t id,
crypto_function_list_t **list, int kmflag);
void crypto_free_function_list(crypto_function_list_t *list);
int crypto_build_permitted_mech_names(kcf_provider_desc_t *,
crypto_mech_name_t **, uint_t *, int);
extern void kcf_destroy_mech_tabs(void);
extern void kcf_init_mech_tabs(void);
extern int kcf_add_mech_provider(short, kcf_provider_desc_t *,
kcf_prov_mech_desc_t **);
extern void kcf_remove_mech_provider(char *, kcf_provider_desc_t *);
extern int kcf_get_mech_entry(crypto_mech_type_t, kcf_mech_entry_t **);
extern kcf_provider_desc_t *kcf_alloc_provider_desc(crypto_provider_info_t *);
extern void kcf_provider_zero_refcnt(kcf_provider_desc_t *);
extern void kcf_free_provider_desc(kcf_provider_desc_t *);
extern void kcf_soft_config_init(void);
extern int get_sw_provider_for_mech(crypto_mech_name_t, char **);
extern crypto_mech_type_t crypto_mech2id_common(char *, boolean_t);
extern void undo_register_provider(kcf_provider_desc_t *, boolean_t);
extern void redo_register_provider(kcf_provider_desc_t *);
extern void kcf_rnd_init(void);
extern boolean_t kcf_rngprov_check(void);
extern int kcf_rnd_get_pseudo_bytes(uint8_t *, size_t);
extern int kcf_rnd_get_bytes(uint8_t *, size_t, boolean_t, boolean_t);
extern int random_add_pseudo_entropy(uint8_t *, size_t, uint_t);
extern void kcf_rnd_schedule_timeout(boolean_t);
extern int crypto_uio_data(crypto_data_t *, uchar_t *, int, cmd_type_t,
void *, void (*update)(void));
extern int crypto_mblk_data(crypto_data_t *, uchar_t *, int, cmd_type_t,
void *, void (*update)(void));
extern int crypto_put_output_data(uchar_t *, crypto_data_t *, int);
extern int crypto_get_input_data(crypto_data_t *, uchar_t **, uchar_t *);
extern int crypto_copy_key_to_ctx(crypto_key_t *, crypto_key_t **, size_t *,
int kmflag);
extern int crypto_digest_data(crypto_data_t *, void *, uchar_t *,
void (*update)(void), void (*final)(void), uchar_t);
extern int crypto_update_iov(void *, crypto_data_t *, crypto_data_t *,
int (*cipher)(void *, caddr_t, size_t, crypto_data_t *),
void (*copy_block)(uint8_t *, uint64_t *));
extern int crypto_update_uio(void *, crypto_data_t *, crypto_data_t *,
int (*cipher)(void *, caddr_t, size_t, crypto_data_t *),
void (*copy_block)(uint8_t *, uint64_t *));
extern int crypto_update_mp(void *, crypto_data_t *, crypto_data_t *,
int (*cipher)(void *, caddr_t, size_t, crypto_data_t *),
void (*copy_block)(uint8_t *, uint64_t *));
extern int crypto_get_key_attr(crypto_key_t *, crypto_attr_type_t, uchar_t **,
ssize_t *);
/* Access to the provider's table */
extern void kcf_prov_tab_destroy(void);
extern void kcf_prov_tab_init(void);
extern int kcf_prov_tab_add_provider(kcf_provider_desc_t *);
extern int kcf_prov_tab_rem_provider(crypto_provider_id_t);
extern kcf_provider_desc_t *kcf_prov_tab_lookup_by_name(char *);
extern kcf_provider_desc_t *kcf_prov_tab_lookup_by_dev(char *, uint_t);
extern int kcf_get_hw_prov_tab(uint_t *, kcf_provider_desc_t ***, int,
char *, uint_t, boolean_t);
extern int kcf_get_slot_list(uint_t *, kcf_provider_desc_t ***, boolean_t);
extern void kcf_free_provider_tab(uint_t, kcf_provider_desc_t **);
extern kcf_provider_desc_t *kcf_prov_tab_lookup(crypto_provider_id_t);
extern int kcf_get_sw_prov(crypto_mech_type_t, kcf_provider_desc_t **,
kcf_mech_entry_t **, boolean_t);
/* Access to the policy table */
extern boolean_t is_mech_disabled(kcf_provider_desc_t *, crypto_mech_name_t);
extern boolean_t is_mech_disabled_byname(crypto_provider_type_t, char *,
uint_t, crypto_mech_name_t);
extern void kcf_policy_tab_init(void);
extern void kcf_policy_free_desc(kcf_policy_desc_t *);
extern void kcf_policy_remove_by_name(char *, uint_t *, crypto_mech_name_t **);
extern void kcf_policy_remove_by_dev(char *, uint_t, uint_t *,
crypto_mech_name_t **);
extern kcf_policy_desc_t *kcf_policy_lookup_by_name(char *);
extern kcf_policy_desc_t *kcf_policy_lookup_by_dev(char *, uint_t);
extern int kcf_policy_load_soft_disabled(char *, uint_t, crypto_mech_name_t *,
uint_t *, crypto_mech_name_t **);
extern int kcf_policy_load_dev_disabled(char *, uint_t, uint_t,
crypto_mech_name_t *, uint_t *, crypto_mech_name_t **);
extern boolean_t in_soft_config_list(char *);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_CRYPTO_IMPL_H */