zfs-builds-mm/zfs-0.8.2/module/zfs/zcp.c

1435 lines
42 KiB
C
Raw Normal View History

2019-10-24 23:13:56 +02:00
/*
* CDDL HEADER START
*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2016, 2018 by Delphix. All rights reserved.
*/
/*
* ZFS Channel Programs (ZCP)
*
* The ZCP interface allows various ZFS commands and operations ZFS
* administrative operations (e.g. creating and destroying snapshots, typically
* performed via an ioctl to /dev/zfs by the zfs(8) command and
* libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP
* script is run as a dsl_sync_task and fully executed during one transaction
* group sync. This ensures that no other changes can be written concurrently
* with a running Lua script. Combining multiple calls to the exposed ZFS
* functions into one script gives a number of benefits:
*
* 1. Atomicity. For some compound or iterative operations, it's useful to be
* able to guarantee that the state of a pool has not changed between calls to
* ZFS.
*
* 2. Performance. If a large number of changes need to be made (e.g. deleting
* many filesystems), there can be a significant performance penalty as a
* result of the need to wait for a transaction group sync to pass for every
* single operation. When expressed as a single ZCP script, all these changes
* can be performed at once in one txg sync.
*
* A modified version of the Lua 5.2 interpreter is used to run channel program
* scripts. The Lua 5.2 manual can be found at:
*
* http://www.lua.org/manual/5.2/
*
* If being run by a user (via an ioctl syscall), executing a ZCP script
* requires root privileges in the global zone.
*
* Scripts are passed to zcp_eval() as a string, then run in a synctask by
* zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist,
* which will be converted to a Lua table. Similarly, values returned from
* a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl()
* for details on exact allowed types and conversion.
*
* ZFS functionality is exposed to a ZCP script as a library of function calls.
* These calls are sorted into submodules, such as zfs.list and zfs.sync, for
* iterators and synctasks, respectively. Each of these submodules resides in
* its own source file, with a zcp_*_info structure describing each library
* call in the submodule.
*
* Error handling in ZCP scripts is handled by a number of different methods
* based on severity:
*
* 1. Memory and time limits are in place to prevent a channel program from
* consuming excessive system or running forever. If one of these limits is
* hit, the channel program will be stopped immediately and return from
* zcp_eval() with an error code. No attempt will be made to roll back or undo
* any changes made by the channel program before the error occured.
* Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
* limit of 0, disabling the time limit.
*
* 2. Internal Lua errors can occur as a result of a syntax error, calling a
* library function with incorrect arguments, invoking the error() function,
* failing an assert(), or other runtime errors. In these cases the channel
* program will stop executing and return from zcp_eval() with an error code.
* In place of a return value, an error message will also be returned in the
* 'result' nvlist containing information about the error. No attempt will be
* made to roll back or undo any changes made by the channel program before the
* error occured.
*
* 3. If an error occurs inside a ZFS library call which returns an error code,
* the error is returned to the Lua script to be handled as desired.
*
* In the first two cases, Lua's error-throwing mechanism is used, which
* longjumps out of the script execution with luaL_error() and returns with the
* error.
*
* See zfs-program(8) for more information on high level usage.
*/
#include <sys/lua/lua.h>
#include <sys/lua/lualib.h>
#include <sys/lua/lauxlib.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_dataset.h>
#include <sys/zcp.h>
#include <sys/zcp_iter.h>
#include <sys/zcp_prop.h>
#include <sys/zcp_global.h>
#ifndef KM_NORMALPRI
#define KM_NORMALPRI 0
#endif
#define ZCP_NVLIST_MAX_DEPTH 20
uint64_t zfs_lua_check_instrlimit_interval = 100;
unsigned long zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
unsigned long zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
/*
* Forward declarations for mutually recursive functions
*/
static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
int);
typedef struct zcp_alloc_arg {
boolean_t aa_must_succeed;
int64_t aa_alloc_remaining;
int64_t aa_alloc_limit;
} zcp_alloc_arg_t;
typedef struct zcp_eval_arg {
lua_State *ea_state;
zcp_alloc_arg_t *ea_allocargs;
cred_t *ea_cred;
nvlist_t *ea_outnvl;
int ea_result;
uint64_t ea_instrlimit;
} zcp_eval_arg_t;
/*
* The outer-most error callback handler for use with lua_pcall(). On
* error Lua will call this callback with a single argument that
* represents the error value. In most cases this will be a string
* containing an error message, but channel programs can use Lua's
* error() function to return arbitrary objects as errors. This callback
* returns (on the Lua stack) the original error object along with a traceback.
*
* Fatal Lua errors can occur while resources are held, so we also call any
* registered cleanup function here.
*/
static int
zcp_error_handler(lua_State *state)
{
const char *msg;
zcp_cleanup(state);
VERIFY3U(1, ==, lua_gettop(state));
msg = lua_tostring(state, 1);
luaL_traceback(state, state, msg, 1);
return (1);
}
int
zcp_argerror(lua_State *state, int narg, const char *msg, ...)
{
va_list alist;
va_start(alist, msg);
const char *buf = lua_pushvfstring(state, msg, alist);
va_end(alist);
return (luaL_argerror(state, narg, buf));
}
/*
* Install a new cleanup function, which will be invoked with the given
* opaque argument if a fatal error causes the Lua interpreter to longjump out
* of a function call.
*
* If an error occurs, the cleanup function will be invoked exactly once and
* then unreigstered.
*
* Returns the registered cleanup handler so the caller can deregister it
* if no error occurs.
*/
zcp_cleanup_handler_t *
zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
{
zcp_run_info_t *ri = zcp_run_info(state);
zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
zch->zch_cleanup_func = cleanfunc;
zch->zch_cleanup_arg = cleanarg;
list_insert_head(&ri->zri_cleanup_handlers, zch);
return (zch);
}
void
zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
{
zcp_run_info_t *ri = zcp_run_info(state);
list_remove(&ri->zri_cleanup_handlers, zch);
kmem_free(zch, sizeof (*zch));
}
/*
* Execute the currently registered cleanup handlers then free them and
* destroy the handler list.
*/
void
zcp_cleanup(lua_State *state)
{
zcp_run_info_t *ri = zcp_run_info(state);
for (zcp_cleanup_handler_t *zch =
list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
zch = list_remove_head(&ri->zri_cleanup_handlers)) {
zch->zch_cleanup_func(zch->zch_cleanup_arg);
kmem_free(zch, sizeof (*zch));
}
}
/*
* Convert the lua table at the given index on the Lua stack to an nvlist
* and return it.
*
* If the table can not be converted for any reason, NULL is returned and
* an error message is pushed onto the Lua stack.
*/
static nvlist_t *
zcp_table_to_nvlist(lua_State *state, int index, int depth)
{
nvlist_t *nvl;
/*
* Converting a Lua table to an nvlist with key uniqueness checking is
* O(n^2) in the number of keys in the nvlist, which can take a long
* time when we return a large table from a channel program.
* Furthermore, Lua's table interface *almost* guarantees unique keys
* on its own (details below). Therefore, we don't use fnvlist_alloc()
* here to avoid the built-in uniqueness checking.
*
* The *almost* is because it's possible to have key collisions between
* e.g. the string "1" and the number 1, or the string "true" and the
* boolean true, so we explicitly check that when we're looking at a
* key which is an integer / boolean or a string that can be parsed as
* one of those types. In the worst case this could still devolve into
* O(n^2), so we only start doing these checks on boolean/integer keys
* once we've seen a string key which fits this weird usage pattern.
*
* Ultimately, we still want callers to know that the keys in this
* nvlist are unique, so before we return this we set the nvlist's
* flags to reflect that.
*/
VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
/*
* Push an empty stack slot where lua_next() will store each
* table key.
*/
lua_pushnil(state);
boolean_t saw_str_could_collide = B_FALSE;
while (lua_next(state, index) != 0) {
/*
* The next key-value pair from the table at index is
* now on the stack, with the key at stack slot -2 and
* the value at slot -1.
*/
int err = 0;
char buf[32];
const char *key = NULL;
boolean_t key_could_collide = B_FALSE;
switch (lua_type(state, -2)) {
case LUA_TSTRING:
key = lua_tostring(state, -2);
/* check if this could collide with a number or bool */
long long tmp;
int parselen;
if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
parselen == strlen(key)) ||
strcmp(key, "true") == 0 ||
strcmp(key, "false") == 0) {
key_could_collide = B_TRUE;
saw_str_could_collide = B_TRUE;
}
break;
case LUA_TBOOLEAN:
key = (lua_toboolean(state, -2) == B_TRUE ?
"true" : "false");
if (saw_str_could_collide) {
key_could_collide = B_TRUE;
}
break;
case LUA_TNUMBER:
VERIFY3U(sizeof (buf), >,
snprintf(buf, sizeof (buf), "%lld",
(longlong_t)lua_tonumber(state, -2)));
key = buf;
if (saw_str_could_collide) {
key_could_collide = B_TRUE;
}
break;
default:
fnvlist_free(nvl);
(void) lua_pushfstring(state, "Invalid key "
"type '%s' in table",
lua_typename(state, lua_type(state, -2)));
return (NULL);
}
/*
* Check for type-mismatched key collisions, and throw an error.
*/
if (key_could_collide && nvlist_exists(nvl, key)) {
fnvlist_free(nvl);
(void) lua_pushfstring(state, "Collision of "
"key '%s' in table", key);
return (NULL);
}
/*
* Recursively convert the table value and insert into
* the new nvlist with the parsed key. To prevent
* stack overflow on circular or heavily nested tables,
* we track the current nvlist depth.
*/
if (depth >= ZCP_NVLIST_MAX_DEPTH) {
fnvlist_free(nvl);
(void) lua_pushfstring(state, "Maximum table "
"depth (%d) exceeded for table",
ZCP_NVLIST_MAX_DEPTH);
return (NULL);
}
err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
depth + 1);
if (err != 0) {
fnvlist_free(nvl);
/*
* Error message has been pushed to the lua
* stack by the recursive call.
*/
return (NULL);
}
/*
* Pop the value pushed by lua_next().
*/
lua_pop(state, 1);
}
/*
* Mark the nvlist as having unique keys. This is a little ugly, but we
* ensured above that there are no duplicate keys in the nvlist.
*/
nvl->nvl_nvflag |= NV_UNIQUE_NAME;
return (nvl);
}
/*
* Convert a value from the given index into the lua stack to an nvpair, adding
* it to an nvlist with the given key.
*
* Values are converted as follows:
*
* string -> string
* number -> int64
* boolean -> boolean
* nil -> boolean (no value)
*
* Lua tables are converted to nvlists and then inserted. The table's keys
* are converted to strings then used as keys in the nvlist to store each table
* element. Keys are converted as follows:
*
* string -> no change
* number -> "%lld"
* boolean -> "true" | "false"
* nil -> error
*
* In the case of a key collision, an error is thrown.
*
* If an error is encountered, a nonzero error code is returned, and an error
* string will be pushed onto the Lua stack.
*/
static int
zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
const char *key, int depth)
{
/*
* Verify that we have enough remaining space in the lua stack to parse
* a key-value pair and push an error.
*/
if (!lua_checkstack(state, 3)) {
(void) lua_pushstring(state, "Lua stack overflow");
return (1);
}
index = lua_absindex(state, index);
switch (lua_type(state, index)) {
case LUA_TNIL:
fnvlist_add_boolean(nvl, key);
break;
case LUA_TBOOLEAN:
fnvlist_add_boolean_value(nvl, key,
lua_toboolean(state, index));
break;
case LUA_TNUMBER:
fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
break;
case LUA_TSTRING:
fnvlist_add_string(nvl, key, lua_tostring(state, index));
break;
case LUA_TTABLE: {
nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
if (value_nvl == NULL)
return (EINVAL);
fnvlist_add_nvlist(nvl, key, value_nvl);
fnvlist_free(value_nvl);
break;
}
default:
(void) lua_pushfstring(state,
"Invalid value type '%s' for key '%s'",
lua_typename(state, lua_type(state, index)), key);
return (EINVAL);
}
return (0);
}
/*
* Convert a lua value to an nvpair, adding it to an nvlist with the given key.
*/
static void
zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
{
/*
* On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
* stack before returning with a nonzero error code. If an error is
* returned, throw a fatal lua error with the given string.
*/
if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
(void) lua_error(state);
}
static int
zcp_lua_to_nvlist_helper(lua_State *state)
{
nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
const char *key = (const char *)lua_touserdata(state, 1);
zcp_lua_to_nvlist(state, 3, nv, key);
return (0);
}
static void
zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
const char *key, zcp_eval_arg_t *evalargs)
{
int err;
VERIFY3U(1, ==, lua_gettop(state));
lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
lua_pushlightuserdata(state, (char *)key);
lua_pushlightuserdata(state, nvl);
lua_pushvalue(state, 1);
lua_remove(state, 1);
err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
if (err != 0) {
zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
evalargs->ea_result = SET_ERROR(ECHRNG);
}
}
/*
* Push a Lua table representing nvl onto the stack. If it can't be
* converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
* be specified as NULL, in which case no error string will be output.
*
* Most nvlists are converted as simple key->value Lua tables, but we make
* an exception for the case where all nvlist entries are BOOLEANs (a string
* key without a value). In Lua, a table key pointing to a value of Nil
* (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
* entry can't be directly converted to a Lua table entry. Nvlists of entirely
* BOOLEAN entries are frequently used to pass around lists of datasets, so for
* convenience we check for this case, and convert it to a simple Lua array of
* strings.
*/
int
zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
char *errbuf, int errbuf_len)
{
nvpair_t *pair;
lua_newtable(state);
boolean_t has_values = B_FALSE;
/*
* If the list doesn't have any values, just convert it to a string
* array.
*/
for (pair = nvlist_next_nvpair(nvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
has_values = B_TRUE;
break;
}
}
if (!has_values) {
int i = 1;
for (pair = nvlist_next_nvpair(nvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
(void) lua_pushinteger(state, i);
(void) lua_pushstring(state, nvpair_name(pair));
(void) lua_settable(state, -3);
i++;
}
} else {
for (pair = nvlist_next_nvpair(nvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
int err = zcp_nvpair_value_to_lua(state, pair,
errbuf, errbuf_len);
if (err != 0) {
lua_pop(state, 1);
return (err);
}
(void) lua_setfield(state, -2, nvpair_name(pair));
}
}
return (0);
}
/*
* Push a Lua object representing the value of "pair" onto the stack.
*
* Only understands boolean_value, string, int64, nvlist,
* string_array, and int64_array type values. For other
* types, returns EINVAL, fills in errbuf, and pushes nothing.
*/
static int
zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
char *errbuf, int errbuf_len)
{
int err = 0;
if (pair == NULL) {
lua_pushnil(state);
return (0);
}
switch (nvpair_type(pair)) {
case DATA_TYPE_BOOLEAN_VALUE:
(void) lua_pushboolean(state,
fnvpair_value_boolean_value(pair));
break;
case DATA_TYPE_STRING:
(void) lua_pushstring(state, fnvpair_value_string(pair));
break;
case DATA_TYPE_INT64:
(void) lua_pushinteger(state, fnvpair_value_int64(pair));
break;
case DATA_TYPE_NVLIST:
err = zcp_nvlist_to_lua(state,
fnvpair_value_nvlist(pair), errbuf, errbuf_len);
break;
case DATA_TYPE_STRING_ARRAY: {
char **strarr;
uint_t nelem;
(void) nvpair_value_string_array(pair, &strarr, &nelem);
lua_newtable(state);
for (int i = 0; i < nelem; i++) {
(void) lua_pushinteger(state, i + 1);
(void) lua_pushstring(state, strarr[i]);
(void) lua_settable(state, -3);
}
break;
}
case DATA_TYPE_UINT64_ARRAY: {
uint64_t *intarr;
uint_t nelem;
(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
lua_newtable(state);
for (int i = 0; i < nelem; i++) {
(void) lua_pushinteger(state, i + 1);
(void) lua_pushinteger(state, intarr[i]);
(void) lua_settable(state, -3);
}
break;
}
case DATA_TYPE_INT64_ARRAY: {
int64_t *intarr;
uint_t nelem;
(void) nvpair_value_int64_array(pair, &intarr, &nelem);
lua_newtable(state);
for (int i = 0; i < nelem; i++) {
(void) lua_pushinteger(state, i + 1);
(void) lua_pushinteger(state, intarr[i]);
(void) lua_settable(state, -3);
}
break;
}
default: {
if (errbuf != NULL) {
(void) snprintf(errbuf, errbuf_len,
"Unhandled nvpair type %d for key '%s'",
nvpair_type(pair), nvpair_name(pair));
}
return (EINVAL);
}
}
return (err);
}
int
zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
int error)
{
if (error == ENOENT) {
(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
return (0); /* not reached; zcp_argerror will longjmp */
} else if (error == EXDEV) {
(void) zcp_argerror(state, 1,
"dataset '%s' is not in the target pool '%s'",
dsname, spa_name(dp->dp_spa));
return (0); /* not reached; zcp_argerror will longjmp */
} else if (error == EIO) {
(void) luaL_error(state,
"I/O error while accessing dataset '%s'", dsname);
return (0); /* not reached; luaL_error will longjmp */
} else if (error != 0) {
(void) luaL_error(state,
"unexpected error %d while accessing dataset '%s'",
error, dsname);
return (0); /* not reached; luaL_error will longjmp */
}
return (0);
}
/*
* Note: will longjmp (via lua_error()) on error.
* Assumes that the dsname is argument #1 (for error reporting purposes).
*/
dsl_dataset_t *
zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
void *tag)
{
dsl_dataset_t *ds;
int error = dsl_dataset_hold(dp, dsname, tag, &ds);
(void) zcp_dataset_hold_error(state, dp, dsname, error);
return (ds);
}
static int zcp_debug(lua_State *);
static zcp_lib_info_t zcp_debug_info = {
.name = "debug",
.func = zcp_debug,
.pargs = {
{ .za_name = "debug string", .za_lua_type = LUA_TSTRING},
{NULL, 0}
},
.kwargs = {
{NULL, 0}
}
};
static int
zcp_debug(lua_State *state)
{
const char *dbgstring;
zcp_run_info_t *ri = zcp_run_info(state);
zcp_lib_info_t *libinfo = &zcp_debug_info;
zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
dbgstring = lua_tostring(state, 1);
zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
return (0);
}
static int zcp_exists(lua_State *);
static zcp_lib_info_t zcp_exists_info = {
.name = "exists",
.func = zcp_exists,
.pargs = {
{ .za_name = "dataset", .za_lua_type = LUA_TSTRING},
{NULL, 0}
},
.kwargs = {
{NULL, 0}
}
};
static int
zcp_exists(lua_State *state)
{
zcp_run_info_t *ri = zcp_run_info(state);
dsl_pool_t *dp = ri->zri_pool;
zcp_lib_info_t *libinfo = &zcp_exists_info;
zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
const char *dsname = lua_tostring(state, 1);
dsl_dataset_t *ds;
int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
if (error == 0) {
dsl_dataset_rele(ds, FTAG);
lua_pushboolean(state, B_TRUE);
} else if (error == ENOENT) {
lua_pushboolean(state, B_FALSE);
} else if (error == EXDEV) {
return (luaL_error(state, "dataset '%s' is not in the "
"target pool", dsname));
} else if (error == EIO) {
return (luaL_error(state, "I/O error opening dataset '%s'",
dsname));
} else if (error != 0) {
return (luaL_error(state, "unexpected error %d", error));
}
return (1);
}
/*
* Allocate/realloc/free a buffer for the lua interpreter.
*
* When nsize is 0, behaves as free() and returns NULL.
*
* If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
* at least nsize.
*
* Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
* Shrinking the buffer size never fails.
*
* The original allocated buffer size is stored as a uint64 at the beginning of
* the buffer to avoid actually reallocating when shrinking a buffer, since lua
* requires that this operation never fail.
*/
static void *
zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
{
zcp_alloc_arg_t *allocargs = ud;
int flags = (allocargs->aa_must_succeed) ?
KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
if (nsize == 0) {
if (ptr != NULL) {
int64_t *allocbuf = (int64_t *)ptr - 1;
int64_t allocsize = *allocbuf;
ASSERT3S(allocsize, >, 0);
ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
allocargs->aa_alloc_limit);
allocargs->aa_alloc_remaining += allocsize;
vmem_free(allocbuf, allocsize);
}
return (NULL);
} else if (ptr == NULL) {
int64_t *allocbuf;
int64_t allocsize = nsize + sizeof (int64_t);
if (!allocargs->aa_must_succeed &&
(allocsize <= 0 ||
allocsize > allocargs->aa_alloc_remaining)) {
return (NULL);
}
allocbuf = vmem_alloc(allocsize, flags);
if (allocbuf == NULL) {
return (NULL);
}
allocargs->aa_alloc_remaining -= allocsize;
*allocbuf = allocsize;
return (allocbuf + 1);
} else if (nsize <= osize) {
/*
* If shrinking the buffer, lua requires that the reallocation
* never fail.
*/
return (ptr);
} else {
ASSERT3U(nsize, >, osize);
uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
if (luabuf == NULL) {
return (NULL);
}
(void) memcpy(luabuf, ptr, osize);
VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
return (luabuf);
}
}
/* ARGSUSED */
static void
zcp_lua_counthook(lua_State *state, lua_Debug *ar)
{
/*
* If we're called, check how many instructions the channel program has
* executed so far, and compare against the limit.
*/
lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
zcp_run_info_t *ri = lua_touserdata(state, -1);
ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
ri->zri_timed_out = B_TRUE;
(void) lua_pushstring(state,
"Channel program timed out.");
(void) lua_error(state);
}
}
static int
zcp_panic_cb(lua_State *state)
{
panic("unprotected error in call to Lua API (%s)\n",
lua_tostring(state, -1));
return (0);
}
static void
zcp_eval_impl(dmu_tx_t *tx, boolean_t sync, zcp_eval_arg_t *evalargs)
{
int err;
zcp_run_info_t ri;
lua_State *state = evalargs->ea_state;
VERIFY3U(3, ==, lua_gettop(state));
/*
* Store the zcp_run_info_t struct for this run in the Lua registry.
* Registry entries are not directly accessible by the Lua scripts but
* can be accessed by our callbacks.
*/
ri.zri_space_used = 0;
ri.zri_pool = dmu_tx_pool(tx);
ri.zri_cred = evalargs->ea_cred;
ri.zri_tx = tx;
ri.zri_timed_out = B_FALSE;
ri.zri_sync = sync;
list_create(&ri.zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
offsetof(zcp_cleanup_handler_t, zch_node));
ri.zri_curinstrs = 0;
ri.zri_maxinstrs = evalargs->ea_instrlimit;
lua_pushlightuserdata(state, &ri);
lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
VERIFY3U(3, ==, lua_gettop(state));
/*
* Tell the Lua interpreter to call our handler every count
* instructions. Channel programs that execute too many instructions
* should die with ETIME.
*/
(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
zfs_lua_check_instrlimit_interval);
/*
* Tell the Lua memory allocator to stop using KM_SLEEP before handing
* off control to the channel program. Channel programs that use too
* much memory should die with ENOSPC.
*/
evalargs->ea_allocargs->aa_must_succeed = B_FALSE;
/*
* Call the Lua function that open-context passed us. This pops the
* function and its input from the stack and pushes any return
* or error values.
*/
err = lua_pcall(state, 1, LUA_MULTRET, 1);
/*
* Let Lua use KM_SLEEP while we interpret the return values.
*/
evalargs->ea_allocargs->aa_must_succeed = B_TRUE;
/*
* Remove the error handler callback from the stack. At this point,
* there shouldn't be any cleanup handler registered in the handler
* list (zri_cleanup_handlers), regardless of whether it ran or not.
*/
list_destroy(&ri.zri_cleanup_handlers);
lua_remove(state, 1);
switch (err) {
case LUA_OK: {
/*
* Lua supports returning multiple values in a single return
* statement. Return values will have been pushed onto the
* stack:
* 1: Return value 1
* 2: Return value 2
* 3: etc...
* To simplify the process of retrieving a return value from a
* channel program, we disallow returning more than one value
* to ZFS from the Lua script, yielding a singleton return
* nvlist of the form { "return": Return value 1 }.
*/
int return_count = lua_gettop(state);
if (return_count == 1) {
evalargs->ea_result = 0;
zcp_convert_return_values(state, evalargs->ea_outnvl,
ZCP_RET_RETURN, evalargs);
} else if (return_count > 1) {
evalargs->ea_result = SET_ERROR(ECHRNG);
lua_settop(state, 0);
(void) lua_pushfstring(state, "Multiple return "
"values not supported");
zcp_convert_return_values(state, evalargs->ea_outnvl,
ZCP_RET_ERROR, evalargs);
}
break;
}
case LUA_ERRRUN:
case LUA_ERRGCMM: {
/*
* The channel program encountered a fatal error within the
* script, such as failing an assertion, or calling a function
* with incompatible arguments. The error value and the
* traceback generated by zcp_error_handler() should be on the
* stack.
*/
VERIFY3U(1, ==, lua_gettop(state));
if (ri.zri_timed_out) {
evalargs->ea_result = SET_ERROR(ETIME);
} else {
evalargs->ea_result = SET_ERROR(ECHRNG);
}
zcp_convert_return_values(state, evalargs->ea_outnvl,
ZCP_RET_ERROR, evalargs);
if (evalargs->ea_result == ETIME &&
evalargs->ea_outnvl != NULL) {
(void) nvlist_add_uint64(evalargs->ea_outnvl,
ZCP_ARG_INSTRLIMIT, ri.zri_curinstrs);
}
break;
}
case LUA_ERRERR: {
/*
* The channel program encountered a fatal error within the
* script, and we encountered another error while trying to
* compute the traceback in zcp_error_handler(). We can only
* return the error message.
*/
VERIFY3U(1, ==, lua_gettop(state));
if (ri.zri_timed_out) {
evalargs->ea_result = SET_ERROR(ETIME);
} else {
evalargs->ea_result = SET_ERROR(ECHRNG);
}
zcp_convert_return_values(state, evalargs->ea_outnvl,
ZCP_RET_ERROR, evalargs);
break;
}
case LUA_ERRMEM:
/*
* Lua ran out of memory while running the channel program.
* There's not much we can do.
*/
evalargs->ea_result = SET_ERROR(ENOSPC);
break;
default:
VERIFY0(err);
}
}
static void
zcp_pool_error(zcp_eval_arg_t *evalargs, const char *poolname)
{
evalargs->ea_result = SET_ERROR(ECHRNG);
lua_settop(evalargs->ea_state, 0);
(void) lua_pushfstring(evalargs->ea_state, "Could not open pool: %s",
poolname);
zcp_convert_return_values(evalargs->ea_state, evalargs->ea_outnvl,
ZCP_RET_ERROR, evalargs);
}
static void
zcp_eval_sync(void *arg, dmu_tx_t *tx)
{
zcp_eval_arg_t *evalargs = arg;
/*
* Open context should have setup the stack to contain:
* 1: Error handler callback
* 2: Script to run (converted to a Lua function)
* 3: nvlist input to function (converted to Lua table or nil)
*/
VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
zcp_eval_impl(tx, B_TRUE, evalargs);
}
static void
zcp_eval_open(zcp_eval_arg_t *evalargs, const char *poolname)
{
int error;
dsl_pool_t *dp;
dmu_tx_t *tx;
/*
* See comment from the same assertion in zcp_eval_sync().
*/
VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
error = dsl_pool_hold(poolname, FTAG, &dp);
if (error != 0) {
zcp_pool_error(evalargs, poolname);
return;
}
/*
* As we are running in open-context, we have no transaction associated
* with the channel program. At the same time, functions from the
* zfs.check submodule need to be associated with a transaction as
* they are basically dry-runs of their counterparts in the zfs.sync
* submodule. These functions should be able to run in open-context.
* Therefore we create a new transaction that we later abort once
* the channel program has been evaluated.
*/
tx = dmu_tx_create_dd(dp->dp_mos_dir);
zcp_eval_impl(tx, B_FALSE, evalargs);
dmu_tx_abort(tx);
dsl_pool_rele(dp, FTAG);
}
int
zcp_eval(const char *poolname, const char *program, boolean_t sync,
uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
{
int err;
lua_State *state;
zcp_eval_arg_t evalargs;
if (instrlimit > zfs_lua_max_instrlimit)
return (SET_ERROR(EINVAL));
if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
return (SET_ERROR(EINVAL));
zcp_alloc_arg_t allocargs = {
.aa_must_succeed = B_TRUE,
.aa_alloc_remaining = (int64_t)memlimit,
.aa_alloc_limit = (int64_t)memlimit,
};
/*
* Creates a Lua state with a memory allocator that uses KM_SLEEP.
* This should never fail.
*/
state = lua_newstate(zcp_lua_alloc, &allocargs);
VERIFY(state != NULL);
(void) lua_atpanic(state, zcp_panic_cb);
/*
* Load core Lua libraries we want access to.
*/
VERIFY3U(1, ==, luaopen_base(state));
lua_pop(state, 1);
VERIFY3U(1, ==, luaopen_coroutine(state));
lua_setglobal(state, LUA_COLIBNAME);
VERIFY0(lua_gettop(state));
VERIFY3U(1, ==, luaopen_string(state));
lua_setglobal(state, LUA_STRLIBNAME);
VERIFY0(lua_gettop(state));
VERIFY3U(1, ==, luaopen_table(state));
lua_setglobal(state, LUA_TABLIBNAME);
VERIFY0(lua_gettop(state));
/*
* Load globally visible variables such as errno aliases.
*/
zcp_load_globals(state);
VERIFY0(lua_gettop(state));
/*
* Load ZFS-specific modules.
*/
lua_newtable(state);
VERIFY3U(1, ==, zcp_load_list_lib(state));
lua_setfield(state, -2, "list");
VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
lua_setfield(state, -2, "check");
VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
lua_setfield(state, -2, "sync");
VERIFY3U(1, ==, zcp_load_get_lib(state));
lua_pushcclosure(state, zcp_debug_info.func, 0);
lua_setfield(state, -2, zcp_debug_info.name);
lua_pushcclosure(state, zcp_exists_info.func, 0);
lua_setfield(state, -2, zcp_exists_info.name);
lua_setglobal(state, "zfs");
VERIFY0(lua_gettop(state));
/*
* Push the error-callback that calculates Lua stack traces on
* unexpected failures.
*/
lua_pushcfunction(state, zcp_error_handler);
VERIFY3U(1, ==, lua_gettop(state));
/*
* Load the actual script as a function onto the stack as text ("t").
* The only valid error condition is a syntax error in the script.
* ERRMEM should not be possible because our allocator is using
* KM_SLEEP. ERRGCMM should not be possible because we have not added
* any objects with __gc metamethods to the interpreter that could
* fail.
*/
err = luaL_loadbufferx(state, program, strlen(program),
"channel program", "t");
if (err == LUA_ERRSYNTAX) {
fnvlist_add_string(outnvl, ZCP_RET_ERROR,
lua_tostring(state, -1));
lua_close(state);
return (SET_ERROR(EINVAL));
}
VERIFY0(err);
VERIFY3U(2, ==, lua_gettop(state));
/*
* Convert the input nvlist to a Lua object and put it on top of the
* stack.
*/
char errmsg[128];
err = zcp_nvpair_value_to_lua(state, nvarg,
errmsg, sizeof (errmsg));
if (err != 0) {
fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
lua_close(state);
return (SET_ERROR(EINVAL));
}
VERIFY3U(3, ==, lua_gettop(state));
evalargs.ea_state = state;
evalargs.ea_allocargs = &allocargs;
evalargs.ea_instrlimit = instrlimit;
evalargs.ea_cred = CRED();
evalargs.ea_outnvl = outnvl;
evalargs.ea_result = 0;
if (sync) {
err = dsl_sync_task(poolname, NULL,
zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
if (err != 0)
zcp_pool_error(&evalargs, poolname);
} else {
zcp_eval_open(&evalargs, poolname);
}
lua_close(state);
return (evalargs.ea_result);
}
/*
* Retrieve metadata about the currently running channel program.
*/
zcp_run_info_t *
zcp_run_info(lua_State *state)
{
zcp_run_info_t *ri;
lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
ri = lua_touserdata(state, -1);
lua_pop(state, 1);
return (ri);
}
/*
* Argument Parsing
* ================
*
* The Lua language allows methods to be called with any number
* of arguments of any type. When calling back into ZFS we need to sanitize
* arguments from channel programs to make sure unexpected arguments or
* arguments of the wrong type result in clear error messages. To do this
* in a uniform way all callbacks from channel programs should use the
* zcp_parse_args() function to interpret inputs.
*
* Positional vs Keyword Arguments
* ===============================
*
* Every callback function takes a fixed set of required positional arguments
* and optional keyword arguments. For example, the destroy function takes
* a single positional string argument (the name of the dataset to destroy)
* and an optional "defer" keyword boolean argument. When calling lua functions
* with parentheses, only positional arguments can be used:
*
* zfs.sync.snapshot("rpool@snap")
*
* To use keyword arguments functions should be called with a single argument
* that is a lua table containing mappings of integer -> positional arguments
* and string -> keyword arguments:
*
* zfs.sync.snapshot({1="rpool@snap", defer=true})
*
* The lua language allows curly braces to be used in place of parenthesis as
* syntactic sugar for this calling convention:
*
* zfs.sync.snapshot{"rpool@snap", defer=true}
*/
/*
* Throw an error and print the given arguments. If there are too many
* arguments to fit in the output buffer, only the error format string is
* output.
*/
static void
zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
const zcp_arg_t *kwargs, const char *fmt, ...)
{
int i;
char errmsg[512];
size_t len = sizeof (errmsg);
size_t msglen = 0;
va_list argp;
va_start(argp, fmt);
VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
va_end(argp);
/*
* Calculate the total length of the final string, including extra
* formatting characters. If the argument dump would be too large,
* only print the error string.
*/
msglen = strlen(errmsg);
msglen += strlen(fname) + 4; /* : + {} + null terminator */
for (i = 0; pargs[i].za_name != NULL; i++) {
msglen += strlen(pargs[i].za_name);
msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
msglen += 5; /* < + ( + )> + , */
else
msglen += 4; /* < + ( + )> */
}
for (i = 0; kwargs[i].za_name != NULL; i++) {
msglen += strlen(kwargs[i].za_name);
msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
if (kwargs[i + 1].za_name != NULL)
msglen += 4; /* =( + ) + , */
else
msglen += 3; /* =( + ) */
}
if (msglen >= len)
(void) luaL_error(state, errmsg);
VERIFY3U(len, >, strlcat(errmsg, ": ", len));
VERIFY3U(len, >, strlcat(errmsg, fname, len));
VERIFY3U(len, >, strlcat(errmsg, "{", len));
for (i = 0; pargs[i].za_name != NULL; i++) {
VERIFY3U(len, >, strlcat(errmsg, "<", len));
VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
VERIFY3U(len, >, strlcat(errmsg, "(", len));
VERIFY3U(len, >, strlcat(errmsg,
lua_typename(state, pargs[i].za_lua_type), len));
VERIFY3U(len, >, strlcat(errmsg, ")>", len));
if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
VERIFY3U(len, >, strlcat(errmsg, ", ", len));
}
}
for (i = 0; kwargs[i].za_name != NULL; i++) {
VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
VERIFY3U(len, >, strlcat(errmsg, "=(", len));
VERIFY3U(len, >, strlcat(errmsg,
lua_typename(state, kwargs[i].za_lua_type), len));
VERIFY3U(len, >, strlcat(errmsg, ")", len));
if (kwargs[i + 1].za_name != NULL) {
VERIFY3U(len, >, strlcat(errmsg, ", ", len));
}
}
VERIFY3U(len, >, strlcat(errmsg, "}", len));
(void) luaL_error(state, errmsg);
panic("unreachable code");
}
static void
zcp_parse_table_args(lua_State *state, const char *fname,
const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
{
int i;
int type;
for (i = 0; pargs[i].za_name != NULL; i++) {
/*
* Check the table for this positional argument, leaving it
* on the top of the stack once we finish validating it.
*/
lua_pushinteger(state, i + 1);
lua_gettable(state, 1);
type = lua_type(state, -1);
if (type == LUA_TNIL) {
zcp_args_error(state, fname, pargs, kwargs,
"too few arguments");
panic("unreachable code");
} else if (type != pargs[i].za_lua_type) {
zcp_args_error(state, fname, pargs, kwargs,
"arg %d wrong type (is '%s', expected '%s')",
i + 1, lua_typename(state, type),
lua_typename(state, pargs[i].za_lua_type));
panic("unreachable code");
}
/*
* Remove the positional argument from the table.
*/
lua_pushinteger(state, i + 1);
lua_pushnil(state);
lua_settable(state, 1);
}
for (i = 0; kwargs[i].za_name != NULL; i++) {
/*
* Check the table for this keyword argument, which may be
* nil if it was omitted. Leave the value on the top of
* the stack after validating it.
*/
lua_getfield(state, 1, kwargs[i].za_name);
type = lua_type(state, -1);
if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
zcp_args_error(state, fname, pargs, kwargs,
"kwarg '%s' wrong type (is '%s', expected '%s')",
kwargs[i].za_name, lua_typename(state, type),
lua_typename(state, kwargs[i].za_lua_type));
panic("unreachable code");
}
/*
* Remove the keyword argument from the table.
*/
lua_pushnil(state);
lua_setfield(state, 1, kwargs[i].za_name);
}
/*
* Any entries remaining in the table are invalid inputs, print
* an error message based on what the entry is.
*/
lua_pushnil(state);
if (lua_next(state, 1)) {
if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
zcp_args_error(state, fname, pargs, kwargs,
"too many positional arguments");
} else if (lua_isstring(state, -2)) {
zcp_args_error(state, fname, pargs, kwargs,
"invalid kwarg '%s'", lua_tostring(state, -2));
} else {
zcp_args_error(state, fname, pargs, kwargs,
"kwarg keys must be strings");
}
panic("unreachable code");
}
lua_remove(state, 1);
}
static void
zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
const zcp_arg_t *kwargs)
{
int i;
int type;
for (i = 0; pargs[i].za_name != NULL; i++) {
type = lua_type(state, i + 1);
if (type == LUA_TNONE) {
zcp_args_error(state, fname, pargs, kwargs,
"too few arguments");
panic("unreachable code");
} else if (type != pargs[i].za_lua_type) {
zcp_args_error(state, fname, pargs, kwargs,
"arg %d wrong type (is '%s', expected '%s')",
i + 1, lua_typename(state, type),
lua_typename(state, pargs[i].za_lua_type));
panic("unreachable code");
}
}
if (lua_gettop(state) != i) {
zcp_args_error(state, fname, pargs, kwargs,
"too many positional arguments");
panic("unreachable code");
}
for (i = 0; kwargs[i].za_name != NULL; i++) {
lua_pushnil(state);
}
}
/*
* Checks the current Lua stack against an expected set of positional and
* keyword arguments. If the stack does not match the expected arguments
* aborts the current channel program with a useful error message, otherwise
* it re-arranges the stack so that it contains the positional arguments
* followed by the keyword argument values in declaration order. Any missing
* keyword argument will be represented by a nil value on the stack.
*
* If the stack contains exactly one argument of type LUA_TTABLE the curly
* braces calling convention is assumed, otherwise the stack is parsed for
* positional arguments only.
*
* This function should be used by every function callback. It should be called
* before the callback manipulates the Lua stack as it assumes the stack
* represents the function arguments.
*/
void
zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
const zcp_arg_t *kwargs)
{
if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
zcp_parse_table_args(state, fname, pargs, kwargs);
} else {
zcp_parse_pos_args(state, fname, pargs, kwargs);
}
}
#if defined(_KERNEL)
/* BEGIN CSTYLED */
module_param(zfs_lua_max_instrlimit, ulong, 0644);
MODULE_PARM_DESC(zfs_lua_max_instrlimit,
"Max instruction limit that can be specified for a channel program");
module_param(zfs_lua_max_memlimit, ulong, 0644);
MODULE_PARM_DESC(zfs_lua_max_memlimit,
"Max memory limit that can be specified for a channel program");
/* END CSTYLED */
#endif