861 lines
23 KiB
C
861 lines
23 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
|
||
|
* Use is subject to license terms.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <sys/zfs_context.h>
|
||
|
#include <sys/spa.h>
|
||
|
#include <sys/spa_impl.h>
|
||
|
#include <sys/dsl_pool.h>
|
||
|
#include <sys/dsl_scan.h>
|
||
|
#include <sys/vdev_impl.h>
|
||
|
#include <sys/zio.h>
|
||
|
#include <sys/abd.h>
|
||
|
#include <sys/fs/zfs.h>
|
||
|
|
||
|
/*
|
||
|
* Vdev mirror kstats
|
||
|
*/
|
||
|
static kstat_t *mirror_ksp = NULL;
|
||
|
|
||
|
typedef struct mirror_stats {
|
||
|
kstat_named_t vdev_mirror_stat_rotating_linear;
|
||
|
kstat_named_t vdev_mirror_stat_rotating_offset;
|
||
|
kstat_named_t vdev_mirror_stat_rotating_seek;
|
||
|
kstat_named_t vdev_mirror_stat_non_rotating_linear;
|
||
|
kstat_named_t vdev_mirror_stat_non_rotating_seek;
|
||
|
|
||
|
kstat_named_t vdev_mirror_stat_preferred_found;
|
||
|
kstat_named_t vdev_mirror_stat_preferred_not_found;
|
||
|
} mirror_stats_t;
|
||
|
|
||
|
static mirror_stats_t mirror_stats = {
|
||
|
/* New I/O follows directly the last I/O */
|
||
|
{ "rotating_linear", KSTAT_DATA_UINT64 },
|
||
|
/* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
|
||
|
{ "rotating_offset", KSTAT_DATA_UINT64 },
|
||
|
/* New I/O requires random seek */
|
||
|
{ "rotating_seek", KSTAT_DATA_UINT64 },
|
||
|
/* New I/O follows directly the last I/O (nonrot) */
|
||
|
{ "non_rotating_linear", KSTAT_DATA_UINT64 },
|
||
|
/* New I/O requires random seek (nonrot) */
|
||
|
{ "non_rotating_seek", KSTAT_DATA_UINT64 },
|
||
|
/* Preferred child vdev found */
|
||
|
{ "preferred_found", KSTAT_DATA_UINT64 },
|
||
|
/* Preferred child vdev not found or equal load */
|
||
|
{ "preferred_not_found", KSTAT_DATA_UINT64 },
|
||
|
|
||
|
};
|
||
|
|
||
|
#define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64)
|
||
|
#define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val)
|
||
|
#define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1)
|
||
|
|
||
|
void
|
||
|
vdev_mirror_stat_init(void)
|
||
|
{
|
||
|
mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
|
||
|
"misc", KSTAT_TYPE_NAMED,
|
||
|
sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
||
|
if (mirror_ksp != NULL) {
|
||
|
mirror_ksp->ks_data = &mirror_stats;
|
||
|
kstat_install(mirror_ksp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vdev_mirror_stat_fini(void)
|
||
|
{
|
||
|
if (mirror_ksp != NULL) {
|
||
|
kstat_delete(mirror_ksp);
|
||
|
mirror_ksp = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Virtual device vector for mirroring.
|
||
|
*/
|
||
|
|
||
|
typedef struct mirror_child {
|
||
|
vdev_t *mc_vd;
|
||
|
uint64_t mc_offset;
|
||
|
int mc_error;
|
||
|
int mc_load;
|
||
|
uint8_t mc_tried;
|
||
|
uint8_t mc_skipped;
|
||
|
uint8_t mc_speculative;
|
||
|
} mirror_child_t;
|
||
|
|
||
|
typedef struct mirror_map {
|
||
|
int *mm_preferred;
|
||
|
int mm_preferred_cnt;
|
||
|
int mm_children;
|
||
|
boolean_t mm_resilvering;
|
||
|
boolean_t mm_root;
|
||
|
mirror_child_t mm_child[];
|
||
|
} mirror_map_t;
|
||
|
|
||
|
static int vdev_mirror_shift = 21;
|
||
|
|
||
|
/*
|
||
|
* The load configuration settings below are tuned by default for
|
||
|
* the case where all devices are of the same rotational type.
|
||
|
*
|
||
|
* If there is a mixture of rotating and non-rotating media, setting
|
||
|
* zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
|
||
|
* as it will direct more reads to the non-rotating vdevs which are more likely
|
||
|
* to have a higher performance.
|
||
|
*/
|
||
|
|
||
|
/* Rotating media load calculation configuration. */
|
||
|
static int zfs_vdev_mirror_rotating_inc = 0;
|
||
|
static int zfs_vdev_mirror_rotating_seek_inc = 5;
|
||
|
static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
|
||
|
|
||
|
/* Non-rotating media load calculation configuration. */
|
||
|
static int zfs_vdev_mirror_non_rotating_inc = 0;
|
||
|
static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
|
||
|
|
||
|
static inline size_t
|
||
|
vdev_mirror_map_size(int children)
|
||
|
{
|
||
|
return (offsetof(mirror_map_t, mm_child[children]) +
|
||
|
sizeof (int) * children);
|
||
|
}
|
||
|
|
||
|
static inline mirror_map_t *
|
||
|
vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
|
||
|
{
|
||
|
mirror_map_t *mm;
|
||
|
|
||
|
mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
|
||
|
mm->mm_children = children;
|
||
|
mm->mm_resilvering = resilvering;
|
||
|
mm->mm_root = root;
|
||
|
mm->mm_preferred = (int *)((uintptr_t)mm +
|
||
|
offsetof(mirror_map_t, mm_child[children]));
|
||
|
|
||
|
return (mm);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_mirror_map_free(zio_t *zio)
|
||
|
{
|
||
|
mirror_map_t *mm = zio->io_vsd;
|
||
|
|
||
|
kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
|
||
|
}
|
||
|
|
||
|
static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
|
||
|
.vsd_free = vdev_mirror_map_free,
|
||
|
.vsd_cksum_report = zio_vsd_default_cksum_report
|
||
|
};
|
||
|
|
||
|
static int
|
||
|
vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
|
||
|
{
|
||
|
uint64_t last_offset;
|
||
|
int64_t offset_diff;
|
||
|
int load;
|
||
|
|
||
|
/* All DVAs have equal weight at the root. */
|
||
|
if (mm->mm_root)
|
||
|
return (INT_MAX);
|
||
|
|
||
|
/*
|
||
|
* We don't return INT_MAX if the device is resilvering i.e.
|
||
|
* vdev_resilver_txg != 0 as when tested performance was slightly
|
||
|
* worse overall when resilvering with compared to without.
|
||
|
*/
|
||
|
|
||
|
/* Fix zio_offset for leaf vdevs */
|
||
|
if (vd->vdev_ops->vdev_op_leaf)
|
||
|
zio_offset += VDEV_LABEL_START_SIZE;
|
||
|
|
||
|
/* Standard load based on pending queue length. */
|
||
|
load = vdev_queue_length(vd);
|
||
|
last_offset = vdev_queue_last_offset(vd);
|
||
|
|
||
|
if (vd->vdev_nonrot) {
|
||
|
/* Non-rotating media. */
|
||
|
if (last_offset == zio_offset) {
|
||
|
MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
|
||
|
return (load + zfs_vdev_mirror_non_rotating_inc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Apply a seek penalty even for non-rotating devices as
|
||
|
* sequential I/O's can be aggregated into fewer operations on
|
||
|
* the device, thus avoiding unnecessary per-command overhead
|
||
|
* and boosting performance.
|
||
|
*/
|
||
|
MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
|
||
|
return (load + zfs_vdev_mirror_non_rotating_seek_inc);
|
||
|
}
|
||
|
|
||
|
/* Rotating media I/O's which directly follow the last I/O. */
|
||
|
if (last_offset == zio_offset) {
|
||
|
MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
|
||
|
return (load + zfs_vdev_mirror_rotating_inc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Apply half the seek increment to I/O's within seek offset
|
||
|
* of the last I/O issued to this vdev as they should incur less
|
||
|
* of a seek increment.
|
||
|
*/
|
||
|
offset_diff = (int64_t)(last_offset - zio_offset);
|
||
|
if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
|
||
|
MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
|
||
|
return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
|
||
|
}
|
||
|
|
||
|
/* Apply the full seek increment to all other I/O's. */
|
||
|
MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
|
||
|
return (load + zfs_vdev_mirror_rotating_seek_inc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Avoid inlining the function to keep vdev_mirror_io_start(), which
|
||
|
* is this functions only caller, as small as possible on the stack.
|
||
|
*/
|
||
|
noinline static mirror_map_t *
|
||
|
vdev_mirror_map_init(zio_t *zio)
|
||
|
{
|
||
|
mirror_map_t *mm = NULL;
|
||
|
mirror_child_t *mc;
|
||
|
vdev_t *vd = zio->io_vd;
|
||
|
int c;
|
||
|
|
||
|
if (vd == NULL) {
|
||
|
dva_t *dva = zio->io_bp->blk_dva;
|
||
|
spa_t *spa = zio->io_spa;
|
||
|
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
|
||
|
dva_t dva_copy[SPA_DVAS_PER_BP];
|
||
|
|
||
|
/*
|
||
|
* The sequential scrub code sorts and issues all DVAs
|
||
|
* of a bp separately. Each of these IOs includes all
|
||
|
* original DVA copies so that repairs can be performed
|
||
|
* in the event of an error, but we only actually want
|
||
|
* to check the first DVA since the others will be
|
||
|
* checked by their respective sorted IOs. Only if we
|
||
|
* hit an error will we try all DVAs upon retrying.
|
||
|
*
|
||
|
* Note: This check is safe even if the user switches
|
||
|
* from a legacy scrub to a sequential one in the middle
|
||
|
* of processing, since scn_is_sorted isn't updated until
|
||
|
* all outstanding IOs from the previous scrub pass
|
||
|
* complete.
|
||
|
*/
|
||
|
if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
|
||
|
!(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
|
||
|
dsl_scan_scrubbing(spa->spa_dsl_pool) &&
|
||
|
scn->scn_is_sorted) {
|
||
|
c = 1;
|
||
|
} else {
|
||
|
c = BP_GET_NDVAS(zio->io_bp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we do not trust the pool config, some DVAs might be
|
||
|
* invalid or point to vdevs that do not exist. We skip them.
|
||
|
*/
|
||
|
if (!spa_trust_config(spa)) {
|
||
|
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
|
||
|
int j = 0;
|
||
|
for (int i = 0; i < c; i++) {
|
||
|
if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
|
||
|
dva_copy[j++] = dva[i];
|
||
|
}
|
||
|
if (j == 0) {
|
||
|
zio->io_vsd = NULL;
|
||
|
zio->io_error = ENXIO;
|
||
|
return (NULL);
|
||
|
}
|
||
|
if (j < c) {
|
||
|
dva = dva_copy;
|
||
|
c = j;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
|
||
|
for (c = 0; c < mm->mm_children; c++) {
|
||
|
mc = &mm->mm_child[c];
|
||
|
|
||
|
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
|
||
|
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* If we are resilvering, then we should handle scrub reads
|
||
|
* differently; we shouldn't issue them to the resilvering
|
||
|
* device because it might not have those blocks.
|
||
|
*
|
||
|
* We are resilvering iff:
|
||
|
* 1) We are a replacing vdev (ie our name is "replacing-1" or
|
||
|
* "spare-1" or something like that), and
|
||
|
* 2) The pool is currently being resilvered.
|
||
|
*
|
||
|
* We cannot simply check vd->vdev_resilver_txg, because it's
|
||
|
* not set in this path.
|
||
|
*
|
||
|
* Nor can we just check our vdev_ops; there are cases (such as
|
||
|
* when a user types "zpool replace pool odev spare_dev" and
|
||
|
* spare_dev is in the spare list, or when a spare device is
|
||
|
* automatically used to replace a DEGRADED device) when
|
||
|
* resilvering is complete but both the original vdev and the
|
||
|
* spare vdev remain in the pool. That behavior is intentional.
|
||
|
* It helps implement the policy that a spare should be
|
||
|
* automatically removed from the pool after the user replaces
|
||
|
* the device that originally failed.
|
||
|
*
|
||
|
* If a spa load is in progress, then spa_dsl_pool may be
|
||
|
* uninitialized. But we shouldn't be resilvering during a spa
|
||
|
* load anyway.
|
||
|
*/
|
||
|
boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
|
||
|
vd->vdev_ops == &vdev_spare_ops) &&
|
||
|
spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
|
||
|
dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
|
||
|
mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
|
||
|
B_FALSE);
|
||
|
for (c = 0; c < mm->mm_children; c++) {
|
||
|
mc = &mm->mm_child[c];
|
||
|
mc->mc_vd = vd->vdev_child[c];
|
||
|
mc->mc_offset = zio->io_offset;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
zio->io_vsd = mm;
|
||
|
zio->io_vsd_ops = &vdev_mirror_vsd_ops;
|
||
|
return (mm);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
|
||
|
uint64_t *ashift)
|
||
|
{
|
||
|
int numerrors = 0;
|
||
|
int lasterror = 0;
|
||
|
|
||
|
if (vd->vdev_children == 0) {
|
||
|
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
vdev_open_children(vd);
|
||
|
|
||
|
for (int c = 0; c < vd->vdev_children; c++) {
|
||
|
vdev_t *cvd = vd->vdev_child[c];
|
||
|
|
||
|
if (cvd->vdev_open_error) {
|
||
|
lasterror = cvd->vdev_open_error;
|
||
|
numerrors++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
|
||
|
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
|
||
|
*ashift = MAX(*ashift, cvd->vdev_ashift);
|
||
|
}
|
||
|
|
||
|
if (numerrors == vd->vdev_children) {
|
||
|
if (vdev_children_are_offline(vd))
|
||
|
vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
|
||
|
else
|
||
|
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
|
||
|
return (lasterror);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_mirror_close(vdev_t *vd)
|
||
|
{
|
||
|
for (int c = 0; c < vd->vdev_children; c++)
|
||
|
vdev_close(vd->vdev_child[c]);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_mirror_child_done(zio_t *zio)
|
||
|
{
|
||
|
mirror_child_t *mc = zio->io_private;
|
||
|
|
||
|
mc->mc_error = zio->io_error;
|
||
|
mc->mc_tried = 1;
|
||
|
mc->mc_skipped = 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_mirror_scrub_done(zio_t *zio)
|
||
|
{
|
||
|
mirror_child_t *mc = zio->io_private;
|
||
|
|
||
|
if (zio->io_error == 0) {
|
||
|
zio_t *pio;
|
||
|
zio_link_t *zl = NULL;
|
||
|
|
||
|
mutex_enter(&zio->io_lock);
|
||
|
while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
|
||
|
mutex_enter(&pio->io_lock);
|
||
|
ASSERT3U(zio->io_size, >=, pio->io_size);
|
||
|
abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
|
||
|
mutex_exit(&pio->io_lock);
|
||
|
}
|
||
|
mutex_exit(&zio->io_lock);
|
||
|
}
|
||
|
|
||
|
abd_free(zio->io_abd);
|
||
|
|
||
|
mc->mc_error = zio->io_error;
|
||
|
mc->mc_tried = 1;
|
||
|
mc->mc_skipped = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check the other, lower-index DVAs to see if they're on the same
|
||
|
* vdev as the child we picked. If they are, use them since they
|
||
|
* are likely to have been allocated from the primary metaslab in
|
||
|
* use at the time, and hence are more likely to have locality with
|
||
|
* single-copy data.
|
||
|
*/
|
||
|
static int
|
||
|
vdev_mirror_dva_select(zio_t *zio, int p)
|
||
|
{
|
||
|
dva_t *dva = zio->io_bp->blk_dva;
|
||
|
mirror_map_t *mm = zio->io_vsd;
|
||
|
int preferred;
|
||
|
int c;
|
||
|
|
||
|
preferred = mm->mm_preferred[p];
|
||
|
for (p--; p >= 0; p--) {
|
||
|
c = mm->mm_preferred[p];
|
||
|
if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
|
||
|
preferred = c;
|
||
|
}
|
||
|
return (preferred);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
vdev_mirror_preferred_child_randomize(zio_t *zio)
|
||
|
{
|
||
|
mirror_map_t *mm = zio->io_vsd;
|
||
|
int p;
|
||
|
|
||
|
if (mm->mm_root) {
|
||
|
p = spa_get_random(mm->mm_preferred_cnt);
|
||
|
return (vdev_mirror_dva_select(zio, p));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* To ensure we don't always favour the first matching vdev,
|
||
|
* which could lead to wear leveling issues on SSD's, we
|
||
|
* use the I/O offset as a pseudo random seed into the vdevs
|
||
|
* which have the lowest load.
|
||
|
*/
|
||
|
p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
|
||
|
return (mm->mm_preferred[p]);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to find a vdev whose DTL doesn't contain the block we want to read
|
||
|
* prefering vdevs based on determined load.
|
||
|
*
|
||
|
* Try to find a child whose DTL doesn't contain the block we want to read.
|
||
|
* If we can't, try the read on any vdev we haven't already tried.
|
||
|
*/
|
||
|
static int
|
||
|
vdev_mirror_child_select(zio_t *zio)
|
||
|
{
|
||
|
mirror_map_t *mm = zio->io_vsd;
|
||
|
uint64_t txg = zio->io_txg;
|
||
|
int c, lowest_load;
|
||
|
|
||
|
ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
|
||
|
|
||
|
lowest_load = INT_MAX;
|
||
|
mm->mm_preferred_cnt = 0;
|
||
|
for (c = 0; c < mm->mm_children; c++) {
|
||
|
mirror_child_t *mc;
|
||
|
|
||
|
mc = &mm->mm_child[c];
|
||
|
if (mc->mc_tried || mc->mc_skipped)
|
||
|
continue;
|
||
|
|
||
|
if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) {
|
||
|
mc->mc_error = SET_ERROR(ENXIO);
|
||
|
mc->mc_tried = 1; /* don't even try */
|
||
|
mc->mc_skipped = 1;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
|
||
|
mc->mc_error = SET_ERROR(ESTALE);
|
||
|
mc->mc_skipped = 1;
|
||
|
mc->mc_speculative = 1;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
|
||
|
if (mc->mc_load > lowest_load)
|
||
|
continue;
|
||
|
|
||
|
if (mc->mc_load < lowest_load) {
|
||
|
lowest_load = mc->mc_load;
|
||
|
mm->mm_preferred_cnt = 0;
|
||
|
}
|
||
|
mm->mm_preferred[mm->mm_preferred_cnt] = c;
|
||
|
mm->mm_preferred_cnt++;
|
||
|
}
|
||
|
|
||
|
if (mm->mm_preferred_cnt == 1) {
|
||
|
MIRROR_BUMP(vdev_mirror_stat_preferred_found);
|
||
|
return (mm->mm_preferred[0]);
|
||
|
}
|
||
|
|
||
|
if (mm->mm_preferred_cnt > 1) {
|
||
|
MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
|
||
|
return (vdev_mirror_preferred_child_randomize(zio));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Every device is either missing or has this txg in its DTL.
|
||
|
* Look for any child we haven't already tried before giving up.
|
||
|
*/
|
||
|
for (c = 0; c < mm->mm_children; c++) {
|
||
|
if (!mm->mm_child[c].mc_tried)
|
||
|
return (c);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Every child failed. There's no place left to look.
|
||
|
*/
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_mirror_io_start(zio_t *zio)
|
||
|
{
|
||
|
mirror_map_t *mm;
|
||
|
mirror_child_t *mc;
|
||
|
int c, children;
|
||
|
|
||
|
mm = vdev_mirror_map_init(zio);
|
||
|
|
||
|
if (mm == NULL) {
|
||
|
ASSERT(!spa_trust_config(zio->io_spa));
|
||
|
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
||
|
zio_execute(zio);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (zio->io_type == ZIO_TYPE_READ) {
|
||
|
if (zio->io_bp != NULL &&
|
||
|
(zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
|
||
|
/*
|
||
|
* For scrubbing reads (if we can verify the
|
||
|
* checksum here, as indicated by io_bp being
|
||
|
* non-NULL) we need to allocate a read buffer for
|
||
|
* each child and issue reads to all children. If
|
||
|
* any child succeeds, it will copy its data into
|
||
|
* zio->io_data in vdev_mirror_scrub_done.
|
||
|
*/
|
||
|
for (c = 0; c < mm->mm_children; c++) {
|
||
|
mc = &mm->mm_child[c];
|
||
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
||
|
mc->mc_vd, mc->mc_offset,
|
||
|
abd_alloc_sametype(zio->io_abd,
|
||
|
zio->io_size), zio->io_size,
|
||
|
zio->io_type, zio->io_priority, 0,
|
||
|
vdev_mirror_scrub_done, mc));
|
||
|
}
|
||
|
zio_execute(zio);
|
||
|
return;
|
||
|
}
|
||
|
/*
|
||
|
* For normal reads just pick one child.
|
||
|
*/
|
||
|
c = vdev_mirror_child_select(zio);
|
||
|
children = (c >= 0);
|
||
|
} else {
|
||
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
||
|
|
||
|
/*
|
||
|
* Writes go to all children.
|
||
|
*/
|
||
|
c = 0;
|
||
|
children = mm->mm_children;
|
||
|
}
|
||
|
|
||
|
while (children--) {
|
||
|
mc = &mm->mm_child[c];
|
||
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
||
|
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
|
||
|
zio->io_type, zio->io_priority, 0,
|
||
|
vdev_mirror_child_done, mc));
|
||
|
c++;
|
||
|
}
|
||
|
|
||
|
zio_execute(zio);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
vdev_mirror_worst_error(mirror_map_t *mm)
|
||
|
{
|
||
|
int error[2] = { 0, 0 };
|
||
|
|
||
|
for (int c = 0; c < mm->mm_children; c++) {
|
||
|
mirror_child_t *mc = &mm->mm_child[c];
|
||
|
int s = mc->mc_speculative;
|
||
|
error[s] = zio_worst_error(error[s], mc->mc_error);
|
||
|
}
|
||
|
|
||
|
return (error[0] ? error[0] : error[1]);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_mirror_io_done(zio_t *zio)
|
||
|
{
|
||
|
mirror_map_t *mm = zio->io_vsd;
|
||
|
mirror_child_t *mc;
|
||
|
int c;
|
||
|
int good_copies = 0;
|
||
|
int unexpected_errors = 0;
|
||
|
|
||
|
if (mm == NULL)
|
||
|
return;
|
||
|
|
||
|
for (c = 0; c < mm->mm_children; c++) {
|
||
|
mc = &mm->mm_child[c];
|
||
|
|
||
|
if (mc->mc_error) {
|
||
|
if (!mc->mc_skipped)
|
||
|
unexpected_errors++;
|
||
|
} else if (mc->mc_tried) {
|
||
|
good_copies++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (zio->io_type == ZIO_TYPE_WRITE) {
|
||
|
/*
|
||
|
* XXX -- for now, treat partial writes as success.
|
||
|
*
|
||
|
* Now that we support write reallocation, it would be better
|
||
|
* to treat partial failure as real failure unless there are
|
||
|
* no non-degraded top-level vdevs left, and not update DTLs
|
||
|
* if we intend to reallocate.
|
||
|
*/
|
||
|
/* XXPOLICY */
|
||
|
if (good_copies != mm->mm_children) {
|
||
|
/*
|
||
|
* Always require at least one good copy.
|
||
|
*
|
||
|
* For ditto blocks (io_vd == NULL), require
|
||
|
* all copies to be good.
|
||
|
*
|
||
|
* XXX -- for replacing vdevs, there's no great answer.
|
||
|
* If the old device is really dead, we may not even
|
||
|
* be able to access it -- so we only want to
|
||
|
* require good writes to the new device. But if
|
||
|
* the new device turns out to be flaky, we want
|
||
|
* to be able to detach it -- which requires all
|
||
|
* writes to the old device to have succeeded.
|
||
|
*/
|
||
|
if (good_copies == 0 || zio->io_vd == NULL)
|
||
|
zio->io_error = vdev_mirror_worst_error(mm);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
||
|
|
||
|
/*
|
||
|
* If we don't have a good copy yet, keep trying other children.
|
||
|
*/
|
||
|
/* XXPOLICY */
|
||
|
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
|
||
|
ASSERT(c >= 0 && c < mm->mm_children);
|
||
|
mc = &mm->mm_child[c];
|
||
|
zio_vdev_io_redone(zio);
|
||
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
||
|
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
|
||
|
ZIO_TYPE_READ, zio->io_priority, 0,
|
||
|
vdev_mirror_child_done, mc));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* XXPOLICY */
|
||
|
if (good_copies == 0) {
|
||
|
zio->io_error = vdev_mirror_worst_error(mm);
|
||
|
ASSERT(zio->io_error != 0);
|
||
|
}
|
||
|
|
||
|
if (good_copies && spa_writeable(zio->io_spa) &&
|
||
|
(unexpected_errors ||
|
||
|
(zio->io_flags & ZIO_FLAG_RESILVER) ||
|
||
|
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
|
||
|
/*
|
||
|
* Use the good data we have in hand to repair damaged children.
|
||
|
*/
|
||
|
for (c = 0; c < mm->mm_children; c++) {
|
||
|
/*
|
||
|
* Don't rewrite known good children.
|
||
|
* Not only is it unnecessary, it could
|
||
|
* actually be harmful: if the system lost
|
||
|
* power while rewriting the only good copy,
|
||
|
* there would be no good copies left!
|
||
|
*/
|
||
|
mc = &mm->mm_child[c];
|
||
|
|
||
|
if (mc->mc_error == 0) {
|
||
|
if (mc->mc_tried)
|
||
|
continue;
|
||
|
/*
|
||
|
* We didn't try this child. We need to
|
||
|
* repair it if:
|
||
|
* 1. it's a scrub (in which case we have
|
||
|
* tried everything that was healthy)
|
||
|
* - or -
|
||
|
* 2. it's an indirect vdev (in which case
|
||
|
* it could point to any other vdev, which
|
||
|
* might have a bad DTL)
|
||
|
* - or -
|
||
|
* 3. the DTL indicates that this data is
|
||
|
* missing from this vdev
|
||
|
*/
|
||
|
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
|
||
|
mc->mc_vd->vdev_ops != &vdev_indirect_ops &&
|
||
|
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
|
||
|
zio->io_txg, 1))
|
||
|
continue;
|
||
|
mc->mc_error = SET_ERROR(ESTALE);
|
||
|
}
|
||
|
|
||
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
||
|
mc->mc_vd, mc->mc_offset,
|
||
|
zio->io_abd, zio->io_size,
|
||
|
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
|
||
|
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
|
||
|
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
|
||
|
{
|
||
|
if (faulted == vd->vdev_children) {
|
||
|
if (vdev_children_are_offline(vd)) {
|
||
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
|
||
|
VDEV_AUX_CHILDREN_OFFLINE);
|
||
|
} else {
|
||
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
||
|
VDEV_AUX_NO_REPLICAS);
|
||
|
}
|
||
|
} else if (degraded + faulted != 0) {
|
||
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
|
||
|
} else {
|
||
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vdev_ops_t vdev_mirror_ops = {
|
||
|
.vdev_op_open = vdev_mirror_open,
|
||
|
.vdev_op_close = vdev_mirror_close,
|
||
|
.vdev_op_asize = vdev_default_asize,
|
||
|
.vdev_op_io_start = vdev_mirror_io_start,
|
||
|
.vdev_op_io_done = vdev_mirror_io_done,
|
||
|
.vdev_op_state_change = vdev_mirror_state_change,
|
||
|
.vdev_op_need_resilver = NULL,
|
||
|
.vdev_op_hold = NULL,
|
||
|
.vdev_op_rele = NULL,
|
||
|
.vdev_op_remap = NULL,
|
||
|
.vdev_op_xlate = vdev_default_xlate,
|
||
|
.vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */
|
||
|
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||
|
};
|
||
|
|
||
|
vdev_ops_t vdev_replacing_ops = {
|
||
|
.vdev_op_open = vdev_mirror_open,
|
||
|
.vdev_op_close = vdev_mirror_close,
|
||
|
.vdev_op_asize = vdev_default_asize,
|
||
|
.vdev_op_io_start = vdev_mirror_io_start,
|
||
|
.vdev_op_io_done = vdev_mirror_io_done,
|
||
|
.vdev_op_state_change = vdev_mirror_state_change,
|
||
|
.vdev_op_need_resilver = NULL,
|
||
|
.vdev_op_hold = NULL,
|
||
|
.vdev_op_rele = NULL,
|
||
|
.vdev_op_remap = NULL,
|
||
|
.vdev_op_xlate = vdev_default_xlate,
|
||
|
.vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */
|
||
|
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||
|
};
|
||
|
|
||
|
vdev_ops_t vdev_spare_ops = {
|
||
|
.vdev_op_open = vdev_mirror_open,
|
||
|
.vdev_op_close = vdev_mirror_close,
|
||
|
.vdev_op_asize = vdev_default_asize,
|
||
|
.vdev_op_io_start = vdev_mirror_io_start,
|
||
|
.vdev_op_io_done = vdev_mirror_io_done,
|
||
|
.vdev_op_state_change = vdev_mirror_state_change,
|
||
|
.vdev_op_need_resilver = NULL,
|
||
|
.vdev_op_hold = NULL,
|
||
|
.vdev_op_rele = NULL,
|
||
|
.vdev_op_remap = NULL,
|
||
|
.vdev_op_xlate = vdev_default_xlate,
|
||
|
.vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */
|
||
|
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||
|
};
|
||
|
|
||
|
#if defined(_KERNEL)
|
||
|
/* BEGIN CSTYLED */
|
||
|
module_param(zfs_vdev_mirror_rotating_inc, int, 0644);
|
||
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_inc,
|
||
|
"Rotating media load increment for non-seeking I/O's");
|
||
|
|
||
|
module_param(zfs_vdev_mirror_rotating_seek_inc, int, 0644);
|
||
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_inc,
|
||
|
"Rotating media load increment for seeking I/O's");
|
||
|
|
||
|
module_param(zfs_vdev_mirror_rotating_seek_offset, int, 0644);
|
||
|
|
||
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_offset,
|
||
|
"Offset in bytes from the last I/O which "
|
||
|
"triggers a reduced rotating media seek increment");
|
||
|
|
||
|
module_param(zfs_vdev_mirror_non_rotating_inc, int, 0644);
|
||
|
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_inc,
|
||
|
"Non-rotating media load increment for non-seeking I/O's");
|
||
|
|
||
|
module_param(zfs_vdev_mirror_non_rotating_seek_inc, int, 0644);
|
||
|
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_seek_inc,
|
||
|
"Non-rotating media load increment for seeking I/O's");
|
||
|
/* END CSTYLED */
|
||
|
#endif
|