/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ /* The purpose of rtw_io.c a. provides the API b. provides the protocol engine c. provides the software interface between caller and the hardware interface Compiler Flag Option: 1. CONFIG_SDIO_HCI: a. USE_SYNC_IRP: Only sync operations are provided. b. USE_ASYNC_IRP:Both sync/async operations are provided. 2. CONFIG_USB_HCI: a. USE_ASYNC_IRP: Both sync/async operations are provided. 3. CONFIG_CFIO_HCI: b. USE_SYNC_IRP: Only sync operations are provided. Only sync read/rtw_write_mem operations are provided. jackson@realtek.com.tw */ #define _RTW_IO_C_ #include #include #if defined(PLATFORM_LINUX) && defined (PLATFORM_WINDOWS) #error "Shall be Linux or Windows, but not both!\n" #endif #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_PLATFORM_RTL8197D) #define rtw_le16_to_cpu(val) val #define rtw_le32_to_cpu(val) val #define rtw_cpu_to_le16(val) val #define rtw_cpu_to_le32(val) val #else #define rtw_le16_to_cpu(val) le16_to_cpu(val) #define rtw_le32_to_cpu(val) le32_to_cpu(val) #define rtw_cpu_to_le16(val) cpu_to_le16(val) #define rtw_cpu_to_le32(val) cpu_to_le32(val) #endif u8 _rtw_read8(_adapter *adapter, u32 addr) { u8 r_val; /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u8(*_read8)(struct intf_hdl *pintfhdl, u32 addr); _read8 = pintfhdl->io_ops._read8; r_val = _read8(pintfhdl, addr); return r_val; } u16 _rtw_read16(_adapter *adapter, u32 addr) { u16 r_val; /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u16(*_read16)(struct intf_hdl *pintfhdl, u32 addr); _read16 = pintfhdl->io_ops._read16; r_val = _read16(pintfhdl, addr); return rtw_le16_to_cpu(r_val); } u32 _rtw_read32(_adapter *adapter, u32 addr) { u32 r_val; /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32(*_read32)(struct intf_hdl *pintfhdl, u32 addr); _read32 = pintfhdl->io_ops._read32; r_val = _read32(pintfhdl, addr); return rtw_le32_to_cpu(r_val); } int _rtw_write8(_adapter *adapter, u32 addr, u8 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write8)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret; _write8 = pintfhdl->io_ops._write8; ret = _write8(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } int _rtw_write16(_adapter *adapter, u32 addr, u16 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write16)(struct intf_hdl *pintfhdl, u32 addr, u16 val); int ret; _write16 = pintfhdl->io_ops._write16; val = rtw_cpu_to_le16(val); ret = _write16(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } int _rtw_write32(_adapter *adapter, u32 addr, u32 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write32)(struct intf_hdl *pintfhdl, u32 addr, u32 val); int ret; _write32 = pintfhdl->io_ops._write32; val = rtw_cpu_to_le32(val); ret = _write32(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } int _rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *pdata) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = (struct intf_hdl *)(&(pio_priv->intf)); int (*_writeN)(struct intf_hdl *pintfhdl, u32 addr, u32 length, u8 *pdata); int ret; _writeN = pintfhdl->io_ops._writeN; ret = _writeN(pintfhdl, addr, length, pdata); return RTW_STATUS_CODE(ret); } #ifdef CONFIG_SDIO_HCI u8 _rtw_sd_f0_read8(_adapter *adapter, u32 addr) { u8 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u8(*_sd_f0_read8)(struct intf_hdl *pintfhdl, u32 addr); _sd_f0_read8 = pintfhdl->io_ops._sd_f0_read8; if (_sd_f0_read8) r_val = _sd_f0_read8(pintfhdl, addr); else RTW_WARN(FUNC_ADPT_FMT" _sd_f0_read8 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return r_val; } #ifdef CONFIG_SDIO_INDIRECT_ACCESS u8 _rtw_sd_iread8(_adapter *adapter, u32 addr) { u8 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u8(*_sd_iread8)(struct intf_hdl *pintfhdl, u32 addr); _sd_iread8 = pintfhdl->io_ops._sd_iread8; if (_sd_iread8) r_val = _sd_iread8(pintfhdl, addr); else RTW_ERR(FUNC_ADPT_FMT" _sd_iread8 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return r_val; } u16 _rtw_sd_iread16(_adapter *adapter, u32 addr) { u16 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u16(*_sd_iread16)(struct intf_hdl *pintfhdl, u32 addr); _sd_iread16 = pintfhdl->io_ops._sd_iread16; if (_sd_iread16) r_val = _sd_iread16(pintfhdl, addr); else RTW_ERR(FUNC_ADPT_FMT" _sd_iread16 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return r_val; } u32 _rtw_sd_iread32(_adapter *adapter, u32 addr) { u32 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32(*_sd_iread32)(struct intf_hdl *pintfhdl, u32 addr); _sd_iread32 = pintfhdl->io_ops._sd_iread32; if (_sd_iread32) r_val = _sd_iread32(pintfhdl, addr); else RTW_ERR(FUNC_ADPT_FMT" _sd_iread32 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return r_val; } int _rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val) { struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_sd_iwrite8)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret = -1; _sd_iwrite8 = pintfhdl->io_ops._sd_iwrite8; if (_sd_iwrite8) ret = _sd_iwrite8(pintfhdl, addr, val); else RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite8 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return RTW_STATUS_CODE(ret); } int _rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val) { struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_sd_iwrite16)(struct intf_hdl *pintfhdl, u32 addr, u16 val); int ret = -1; _sd_iwrite16 = pintfhdl->io_ops._sd_iwrite16; if (_sd_iwrite16) ret = _sd_iwrite16(pintfhdl, addr, val); else RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite16 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return RTW_STATUS_CODE(ret); } int _rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val) { struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_sd_iwrite32)(struct intf_hdl *pintfhdl, u32 addr, u32 val); int ret = -1; _sd_iwrite32 = pintfhdl->io_ops._sd_iwrite32; if (_sd_iwrite32) ret = _sd_iwrite32(pintfhdl, addr, val); else RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite32 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return RTW_STATUS_CODE(ret); } #endif /* CONFIG_SDIO_INDIRECT_ACCESS */ #endif /* CONFIG_SDIO_HCI */ int _rtw_write8_async(_adapter *adapter, u32 addr, u8 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write8_async)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret; _write8_async = pintfhdl->io_ops._write8_async; ret = _write8_async(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } int _rtw_write16_async(_adapter *adapter, u32 addr, u16 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write16_async)(struct intf_hdl *pintfhdl, u32 addr, u16 val); int ret; _write16_async = pintfhdl->io_ops._write16_async; val = rtw_cpu_to_le16(val); ret = _write16_async(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } int _rtw_write32_async(_adapter *adapter, u32 addr, u32 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write32_async)(struct intf_hdl *pintfhdl, u32 addr, u32 val); int ret; _write32_async = pintfhdl->io_ops._write32_async; val = rtw_cpu_to_le32(val); ret = _write32_async(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } void _rtw_read_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { void (*_read_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); if (RTW_CANNOT_RUN(adapter)) { return; } _read_mem = pintfhdl->io_ops._read_mem; _read_mem(pintfhdl, addr, cnt, pmem); } void _rtw_write_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { void (*_write_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _write_mem = pintfhdl->io_ops._write_mem; _write_mem(pintfhdl, addr, cnt, pmem); } void _rtw_read_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { u32(*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); if (RTW_CANNOT_RUN(adapter)) { return; } _read_port = pintfhdl->io_ops._read_port; _read_port(pintfhdl, addr, cnt, pmem); } void _rtw_read_port_cancel(_adapter *adapter) { void (*_read_port_cancel)(struct intf_hdl *pintfhdl); struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _read_port_cancel = pintfhdl->io_ops._read_port_cancel; RTW_DISABLE_FUNC(adapter, DF_RX_BIT); if (_read_port_cancel) _read_port_cancel(pintfhdl); } u32 _rtw_write_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { u32(*_write_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32 ret = _SUCCESS; _write_port = pintfhdl->io_ops._write_port; ret = _write_port(pintfhdl, addr, cnt, pmem); return ret; } u32 _rtw_write_port_and_wait(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem, int timeout_ms) { int ret = _SUCCESS; struct xmit_buf *pxmitbuf = (struct xmit_buf *)pmem; struct submit_ctx sctx; rtw_sctx_init(&sctx, timeout_ms); pxmitbuf->sctx = &sctx; ret = _rtw_write_port(adapter, addr, cnt, pmem); if (ret == _SUCCESS) { ret = rtw_sctx_wait(&sctx, __func__); if (ret != _SUCCESS) pxmitbuf->sctx = NULL; } return ret; } void _rtw_write_port_cancel(_adapter *adapter) { void (*_write_port_cancel)(struct intf_hdl *pintfhdl); struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _write_port_cancel = pintfhdl->io_ops._write_port_cancel; RTW_DISABLE_FUNC(adapter, DF_TX_BIT); if (_write_port_cancel) _write_port_cancel(pintfhdl); } int rtw_init_io_priv(_adapter *padapter, void (*set_intf_ops)(_adapter *padapter, struct _io_ops *pops)) { struct io_priv *piopriv = &padapter->iopriv; struct intf_hdl *pintf = &piopriv->intf; if (set_intf_ops == NULL) return _FAIL; piopriv->padapter = padapter; pintf->padapter = padapter; pintf->pintf_dev = adapter_to_dvobj(padapter); set_intf_ops(padapter, &pintf->io_ops); return _SUCCESS; } /* * Increase and check if the continual_io_error of this @param dvobjprive is larger than MAX_CONTINUAL_IO_ERR * @return _TRUE: * @return _FALSE: */ int rtw_inc_and_chk_continual_io_error(struct dvobj_priv *dvobj) { int ret = _FALSE; int value; value = ATOMIC_INC_RETURN(&dvobj->continual_io_error); if (value > MAX_CONTINUAL_IO_ERR) { RTW_INFO("[dvobj:%p][ERROR] continual_io_error:%d > %d\n", dvobj, value, MAX_CONTINUAL_IO_ERR); ret = _TRUE; } else { /* RTW_INFO("[dvobj:%p] continual_io_error:%d\n", dvobj, value); */ } return ret; } /* * Set the continual_io_error of this @param dvobjprive to 0 */ void rtw_reset_continual_io_error(struct dvobj_priv *dvobj) { ATOMIC_SET(&dvobj->continual_io_error, 0); } #ifdef DBG_IO #define RTW_IO_SNIFF_TYPE_RANGE 0 /* specific address range is accessed */ #define RTW_IO_SNIFF_TYPE_EN 1 /* part or all sniffed range is enabled */ #define RTW_IO_SNIFF_TYPE_DIS 2 /* part or all sniffed range is disabled */ struct rtw_io_sniff_ent { u8 chip; u8 hci; u32 addr; u8 type; union { u32 end_addr; u32 mask; } u; char *tag; }; const char *rtw_io_sniff_ent_get_tag(const struct rtw_io_sniff_ent *ent) { return ent->tag; } #define RTW_IO_SNIFF_RANGE_ENT(_chip, _hci, _addr, _end_addr, _tag) \ {.chip = _chip, .hci = _hci, .addr = _addr, .u.end_addr = _end_addr, .tag = _tag, .type = RTW_IO_SNIFF_TYPE_RANGE,} #define RTW_IO_SNIFF_EN_ENT(_chip, _hci, _addr, _mask, _tag) \ {.chip = _chip, .hci = _hci, .addr = _addr, .u.mask = _mask, .tag = _tag, .type = RTW_IO_SNIFF_TYPE_EN,} #define RTW_IO_SNIFF_DIS_ENT(_chip, _hci, _addr, _mask, _tag) \ {.chip = _chip, .hci = _hci, .addr = _addr, .u.mask = _mask, .tag = _tag, .type = RTW_IO_SNIFF_TYPE_DIS,} const struct rtw_io_sniff_ent read_sniff[] = { #ifdef DBG_IO_HCI_EN_CHK RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_SDIO, 0x02, 0x1FC, "SDIO 0x02[8:2] not all 0"), RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_USB, 0x02, 0x1E0, "USB 0x02[8:5] not all 0"), RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_PCIE, 0x02, 0x01C, "PCI 0x02[4:2] not all 0"), #endif #ifdef DBG_IO_SNIFF_EXAMPLE RTW_IO_SNIFF_RANGE_ENT(MAX_CHIP_TYPE, 0, 0x522, 0x522, "read TXPAUSE"), RTW_IO_SNIFF_DIS_ENT(MAX_CHIP_TYPE, 0, 0x02, 0x3, "0x02[1:0] not all 1"), #endif }; const int read_sniff_num = sizeof(read_sniff) / sizeof(struct rtw_io_sniff_ent); const struct rtw_io_sniff_ent write_sniff[] = { #ifdef DBG_IO_HCI_EN_CHK RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_SDIO, 0x02, 0x1FC, "SDIO 0x02[8:2] not all 0"), RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_USB, 0x02, 0x1E0, "USB 0x02[8:5] not all 0"), RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_PCIE, 0x02, 0x01C, "PCI 0x02[4:2] not all 0"), #endif #ifdef DBG_IO_SNIFF_EXAMPLE RTW_IO_SNIFF_RANGE_ENT(MAX_CHIP_TYPE, 0, 0x522, 0x522, "write TXPAUSE"), RTW_IO_SNIFF_DIS_ENT(MAX_CHIP_TYPE, 0, 0x02, 0x3, "0x02[1:0] not all 1"), #endif }; const int write_sniff_num = sizeof(write_sniff) / sizeof(struct rtw_io_sniff_ent); static bool match_io_sniff_ranges(_adapter *adapter , const struct rtw_io_sniff_ent *sniff, int i, u32 addr, u16 len) { /* check if IO range after sniff end address */ if (addr > sniff->u.end_addr) return 0; return 1; } static bool match_io_sniff_en(_adapter *adapter , const struct rtw_io_sniff_ent *sniff, int i, u32 addr, u8 len, u32 val) { u8 sniff_len; u8 shift; u32 mask; bool ret = 0; /* check if IO range after sniff end address */ sniff_len = 4; while (!(sniff->u.mask & (0xFF << ((sniff_len - 1) * 8)))) { sniff_len--; if (sniff_len == 0) goto exit; } if (sniff->addr + sniff_len <= addr) goto exit; if (sniff->addr > addr) { shift = (sniff->addr - addr) * 8; mask = sniff->u.mask << shift; } else if (sniff->addr < addr) { shift = (addr - sniff->addr) * 8; mask = sniff->u.mask >> shift; } else { shift = 0; mask = sniff->u.mask; } if (sniff->type == RTW_IO_SNIFF_TYPE_DIS) { if (len == 4) mask &= 0xFFFFFFFF; else if (len == 3) mask &= 0x00FFFFFF; else if (len == 2) mask &= 0x0000FFFF; else if (len == 1) mask &= 0x000000FF; else mask &= 0x00000000; } if ((sniff->type == RTW_IO_SNIFF_TYPE_EN && (mask & val)) || (sniff->type == RTW_IO_SNIFF_TYPE_DIS && (mask & val) != mask) ) { ret = 1; if (0) RTW_INFO(FUNC_ADPT_FMT" addr:0x%x len:%u val:0x%x i:%d sniff_len:%u shift:%u mask:0x%x\n" , FUNC_ADPT_ARG(adapter), addr, len, val, i, sniff_len, shift, mask); } exit: return ret; } static bool match_io_sniff(_adapter *adapter , const struct rtw_io_sniff_ent *sniff, int i, u32 addr, u8 len, u32 val) { bool ret = 0; if (sniff->chip != MAX_CHIP_TYPE && sniff->chip != rtw_get_chip_type(adapter)) goto exit; if (sniff->hci && !(sniff->hci & rtw_get_intf_type(adapter))) goto exit; if (sniff->addr >= addr + len) /* IO range below sniff start address */ goto exit; switch (sniff->type) { case RTW_IO_SNIFF_TYPE_RANGE: ret = match_io_sniff_ranges(adapter, sniff, i, addr, len); break; case RTW_IO_SNIFF_TYPE_EN: case RTW_IO_SNIFF_TYPE_DIS: if (len == 1 || len == 2 || len == 4) ret = match_io_sniff_en(adapter, sniff, i, addr, len, val); break; default: rtw_warn_on(1); break; } exit: return ret; } const struct rtw_io_sniff_ent *match_read_sniff(_adapter *adapter , u32 addr, u16 len, u32 val) { int i; bool ret = 0; for (i = 0; i < read_sniff_num; i++) { ret = match_io_sniff(adapter, &read_sniff[i], i, addr, len, val); if (ret) goto exit; } exit: return ret ? &read_sniff[i] : NULL; } const struct rtw_io_sniff_ent *match_write_sniff(_adapter *adapter , u32 addr, u16 len, u32 val) { int i; bool ret = 0; for (i = 0; i < write_sniff_num; i++) { ret = match_io_sniff(adapter, &write_sniff[i], i, addr, len, val); if (ret) goto exit; } exit: return ret ? &write_sniff[i] : NULL; } struct rf_sniff_ent { u8 path; u16 reg; u32 mask; }; struct rf_sniff_ent rf_read_sniff_ranges[] = { /* example for all path addr 0x55 with all RF Reg mask */ /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */ }; struct rf_sniff_ent rf_write_sniff_ranges[] = { /* example for all path addr 0x55 with all RF Reg mask */ /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */ }; int rf_read_sniff_num = sizeof(rf_read_sniff_ranges) / sizeof(struct rf_sniff_ent); int rf_write_sniff_num = sizeof(rf_write_sniff_ranges) / sizeof(struct rf_sniff_ent); bool match_rf_read_sniff_ranges(_adapter *adapter, u8 path, u32 addr, u32 mask) { int i; for (i = 0; i < rf_read_sniff_num; i++) { if (rf_read_sniff_ranges[i].path == MAX_RF_PATH || rf_read_sniff_ranges[i].path == path) if (addr == rf_read_sniff_ranges[i].reg && (mask & rf_read_sniff_ranges[i].mask)) return _TRUE; } return _FALSE; } bool match_rf_write_sniff_ranges(_adapter *adapter, u8 path, u32 addr, u32 mask) { int i; for (i = 0; i < rf_write_sniff_num; i++) { if (rf_write_sniff_ranges[i].path == MAX_RF_PATH || rf_write_sniff_ranges[i].path == path) if (addr == rf_write_sniff_ranges[i].reg && (mask & rf_write_sniff_ranges[i].mask)) return _TRUE; } return _FALSE; } u8 dbg_rtw_read8(_adapter *adapter, u32 addr, const char *caller, const int line) { u8 val = _rtw_read8(adapter, addr); const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 1, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_read8(0x%04x) return 0x%02x %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return val; } u16 dbg_rtw_read16(_adapter *adapter, u32 addr, const char *caller, const int line) { u16 val = _rtw_read16(adapter, addr); const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 2, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_read16(0x%04x) return 0x%04x %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return val; } u32 dbg_rtw_read32(_adapter *adapter, u32 addr, const char *caller, const int line) { u32 val = _rtw_read32(adapter, addr); const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 4, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_read32(0x%04x) return 0x%08x %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return val; } int dbg_rtw_write8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line) { const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 1, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_write8(0x%04x, 0x%02x) %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return _rtw_write8(adapter, addr, val); } int dbg_rtw_write16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line) { const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 2, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_write16(0x%04x, 0x%04x) %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return _rtw_write16(adapter, addr, val); } int dbg_rtw_write32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line) { const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 4, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_write32(0x%04x, 0x%08x) %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return _rtw_write32(adapter, addr, val); } int dbg_rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *data, const char *caller, const int line) { const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, length, 0); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_writeN(0x%04x, %u) %s\n" , caller, line, addr, length, rtw_io_sniff_ent_get_tag(ent)); } return _rtw_writeN(adapter, addr, length, data); } #ifdef CONFIG_SDIO_HCI u8 dbg_rtw_sd_f0_read8(_adapter *adapter, u32 addr, const char *caller, const int line) { u8 val = _rtw_sd_f0_read8(adapter, addr); #if 0 const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 1, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_sd_f0_read8(0x%04x) return 0x%02x %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } #endif return val; } #ifdef CONFIG_SDIO_INDIRECT_ACCESS u8 dbg_rtw_sd_iread8(_adapter *adapter, u32 addr, const char *caller, const int line) { u8 val = rtw_sd_iread8(adapter, addr); const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 1, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_sd_iread8(0x%04x) return 0x%02x %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return val; } u16 dbg_rtw_sd_iread16(_adapter *adapter, u32 addr, const char *caller, const int line) { u16 val = _rtw_sd_iread16(adapter, addr); const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 2, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_sd_iread16(0x%04x) return 0x%04x %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return val; } u32 dbg_rtw_sd_iread32(_adapter *adapter, u32 addr, const char *caller, const int line) { u32 val = _rtw_sd_iread32(adapter, addr); const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 4, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_sd_iread32(0x%04x) return 0x%08x %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return val; } int dbg_rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line) { const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 1, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite8(0x%04x, 0x%02x) %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return _rtw_sd_iwrite8(adapter, addr, val); } int dbg_rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line) { const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 2, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite16(0x%04x, 0x%04x) %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return _rtw_sd_iwrite16(adapter, addr, val); } int dbg_rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line) { const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 4, val); if (ent) { RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite32(0x%04x, 0x%08x) %s\n" , caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent)); } return _rtw_sd_iwrite32(adapter, addr, val); } #endif /* CONFIG_SDIO_INDIRECT_ACCESS */ #endif /* CONFIG_SDIO_HCI */ #endif